Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
lesley.gray@retired.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Changing response of the North Atlantic/European Winter Climate to the 11-year solar cycle

Environmental Research Letters IOP Publishing 13:3 (2017) 1-10

Authors:

H Ma, H Chen, Lesley Gray, L Zhou, X Li, R Wang, S Zhu

Abstract:

Recent studies have presented conflicting results regarding the 11-year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mslp response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44-years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4-year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time, with stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which is associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from the late winter month (February), possibly reflecting a result of strong internal noise.
More details from the publisher
Details from ORA
More details

Stratospheric Response to the 11-Yr Solar Cycle: Breaking Planetary Waves, Internal Reflection, and Resonance

JOURNAL OF CLIMATE 30:18 (2017) 7169-7190

Authors:

Hua Lu, Lesley J Gray, Ian P White, Thomas J Bracegirdle
More details from the publisher
More details

Defining metrics of the Quasi-Biennial Oscillation in global climate models

Geoscientific Model Development European Geosciences Union 10:6 (2017) 2157-2168

Authors:

V Schenzinger, Scott Osprey, Lesley Gray, N Butchart

Abstract:

As the dominant mode of variability in the tropical stratosphere, the Quasi-Biennial Oscillation (QBO) has been subject to extensive research. Though there is a well-developed theory of this phenomenon being forced by wave-mean flow interaction, simulating the QBO adequately in global climate models still remains difficult. This paper presents a set of metrics to characterize the morphology of the QBO using a number of different reanalysis datasets and the FU Berlin radiosonde observation dataset. The same metrics are then calculated from Coupled Model Intercomparison Project 5 and Chemistry-Climate Model Validation Activity 2 simulations which included a representation of QBO-like behaviour to evaluate which aspects of the QBO are well captured by the models and which ones remain a challenge for future model development.
More details from the publisher
Details from ORA
More details

Downward wave reflection as a mechanism for the stratosphere–troposphere response to the 11-yr solar cycle

Journal of Climate American Meteorological Society 30:7 (2017) 2395-2414

Authors:

H Lu, AA Scaife, GJ Marshall, J Turner, Lesley Gray

Abstract:

The effects of solar activity on the stratospheric waveguides and downward reflection of planetary waves during NH early to midwinter are examined. Under high solar (HS) conditions, enhanced westerly winds in the subtropical upper stratosphere and the associated changes in the zonal wind curvature led to an altered waveguide geometry across the winter period in the upper stratosphere. In particular, the condition for barotropic instability was more frequently met at 1 hPa near the polar-night jet centered at about 55°N. In early winter, the corresponding change in wave forcing was characterized by a vertical dipole pattern of the Eliassen–Palm (E–P) flux divergent anomalies in the high-latitude upper stratosphere accompanied by poleward E–P flux anomalies. These wave forcing anomalies corresponded with negative vertical shear of zonal mean winds and the formation of a vertical reflecting surface. Enhanced downward E–P flux anomalies appeared below the negative shear zone; they coincided with more frequent occurrence of negative daily heat fluxes and were associated with eastward acceleration and downward group velocity. These downward-reflected wave anomalies had a detectable effect on the vertical structure of planetary waves during November–January. The associated changes in tropospheric geopotential height contributed to a more positive phase of the North Atlantic Oscillation in January and February. These results suggest that downward reflection may act as a “top down” pathway by which the effects of solar ultraviolet (UV) radiation in the upper stratosphere can be transmitted to the troposphere.
More details from the publisher
Details from ORA
More details

Solar influences on climate over the Atlantic / European sector

AIP Conference Proceedings AIP Publishing 1810:1 (2017)

Authors:

Lesley Gray, W Ball, S Misios

Abstract:

There is growing evidence that variability associated with the 11-year solar cycle has an impact at the Earth’s surface and influences its weather and climate. Although the direct response to the Sun’s variability is extremely small, a number of different mechanisms have been suggested that could amplify the signal, resulting in regional signals that are much larger than expected. In this paper the observed solar cycle signal at the Earth’s surface is described, together with proposed mechanisms that involve modulation via the total incoming solar irradiance and via modulation of the ultra-violet part of the solar spectrum that influences ozone production in the stratosphere.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet