Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Lesley.Gray@physics.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems

ATMOSPHERIC CHEMISTRY AND PHYSICS 17:2 (2017) 1417-1452

Authors:

Masatomo Fujiwara, Jonathon S Wright, Gloria L Manney, Lesley J Gray, James Anstey, Thomas Birner, Sean Davis, Edwin P Gerber, V Lynn Harvey, Michaela I Hegglin, Cameron R Homeyer, John A Knox, Kirstin Kruger, Alyn Lambert, Craig S Long, Patrick Martineau, Andrea Molod, Beatriz M Monge-Sanz, Michelle L Santee, Susann Tegtmeier, Simon Chabrillat, David GH Tan, David R Jackson, Saroja Polavarapu, Gilbert P Compo, Rossana Dragani, Wesley Ebisuzaki, Yayoi Harada, Chiaki Kobayashi, Will McCarty, Kazutoshi Onogi, Steven Pawson, Adrian Simmons, Krzysztof Wargan, Jeffrey S Whitaker, Cheng-Zhi Zou
More details from the publisher
More details

Report on the SPARC QBO Workshop: The QBO and its Global Influence - Past, Present and Future

Stratosphere-troposphere Processes And their Role in Climate (2017) 33-41

Authors:

James Anstey, Scott Osprey, Neal Butchart, Kevin Hamilton, Lesley Gray, Mark Baldwin

Abstract:

There is no known atmospheric phenomenon with a longer horizon of predictability than the quasibiennial oscillation (QBO) of tropical stratospheric circulation. With a mean period of about 28 months, the QBO phase can routinely be predicted at least a year in advance. This predictability arises from internal atmospheric dynamics, rather than from external forcings with long timescales, and it offers the tantalizing prospect of improved predictions for any phenomena influenced by the QBO. Observed QBO teleconnections include an apparent QBO influence on the stratospheric winter polar vortices in both hemispheres, the Madden-Julian Oscillation (MJO), and the North-Atlantic Oscillation (NAO). Yet the degree to which such teleconnections are real, robust, and sufficiently strong to provide useful predictive skill remains an important topic of research. Utilizing and understanding these linkages will require atmospheric models that adequately represent both the QBO and the mechanisms by which it influences other aspects of the general circulation, such as tropical deep convection.


The 2016 QBO workshop in Oxford aimed to explore these themes, and to build on the outcomes of the first QBO workshop, held in March 2015 in Victoria, BC, Canada (as reported in SPARC Newsletter No. 45). This earlier workshop was the kick-off meeting of the SPARC QBOi (QBO Initiative) activity, and its key outcome was to plan a series of coordinated Atmosphere General Circulation Model (AGCM) experiments (the “phase-one” QBOi experiments). These experiments provide a multi-model dataset that can be used to investigate the aforementioned themes. While the focus of the Victoria meeting was primarily on the QBO itself, the Oxford workshop has broadened the scope of the QBOi activity to encompass QBO impacts. Its primary outcome is a planned set of core papers analysing the phaseone QBOi experiments,

Details from ORA

Results from the SPARC Reanalysis Intercomparison Project (S-RIP) during 2013-2017

(2017)

Authors:

Masatomo Fujiwara, GL Manney, Lesley J Gray, Susann Tegtmeier

The 11-year solar cycle – mechanisms for surface impact.

Third European Earth System and Climate Modelling School (3rd E2SCMS) European Network for Earth System Modelling (2016)

Authors:

Matthew Brown, Lesley Gray

Abstract:

The 11-year period solar cycle in the sun’s output impacts the winter surface climate of Northern Europe and the Atlantic. This occurs through a chain of dynamical processes, illustrated below, that we are only only just starting to understand. Using the HadGEM model to conduct a series of sensitivity experiments, I aim to improve this understanding, and perhaps the predictability of N. Europe winters.
Details from ORA

Eleven-year solar cycle signal in the NAO and Atlantic/European blocking

Quarterly Journal of the Royal Meteorological Society John Wiley & Sons Ltd 142:698 (2016) 1890-1903

Authors:

Lesley Gray, Tim J Woollings, M Andrews, J Knight

Abstract:

The 11-year solar cycle signal in December-January-February (DJF) averaged mean sea level pressure (SLP) and Atlantic / European blocking frequency is examined using multi-linear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino Southern Oscillation (ENSO) and the Atlantic Multi-decadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870–2010 (140 years; ~13 solar cycles) that suggested a 3–4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660–2010 (350 years; ~32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early and late winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0–2 years lags and one via the mixed-layer ocean that maximises in early winter at 3–4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at ~1-year lag that originates primarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet