Flux dependence of redshift distribution and clustering of LOFAR radio sources
Astronomy and Astrophysics EDP Sciences 692 (2024) A2
Abstract:
Context. We study the flux density dependence of the redshift distribution of low-frequency radio sources observed in the LOFAR Two-metre Sky Survey (LoTSS) deep fields and apply it to estimate the clustering length of the large-scale structure of the Universe, examining flux density limited samples (1 mJy, 2 mJy, 4 mJy and 8 mJy) of LoTSS wide field radio sources.Methods. We utilise and combine the posterior probability distributions of photometric redshift determinations for LoTSS deep field observations from three different fields (Boötes, Lockman hole and ELAIS-N1, together about 26 square degrees of sky), which are available for between 91% to 96% of all sources above the studied flux density thresholds and observed in the area covered by multi-frequency data. We estimate uncertainties by a bootstrap method. We apply the inferred redshift distribution on the LoTSS wide area radio sources from the HETDEX field (LoTSS-DR1; about 424 square degrees) and make use of the Limber approximation and a power-law model of three dimensional clustering to measure the clustering length, r0, for various models of the evolution of clustering.
Results. We find that the redshift distributions from all three LoTSS deep fields agree within expected uncertainties. We show that the radio source population probed by LoTSS at flux densities above 1 mJy has a median redshift of at least 0.9. At 2 mJy, we measure the clustering length of LoTSS radio sources to be r0 = (10.1 ± 2.6) h−1 Mpc in the context of the comoving clustering model.
Conclusions. Our findings are in agreement with measurements at higher flux density thresholds at the same frequency and with measurements at higher frequencies in the context of the comoving clustering model. Based on the inferred flux density limited redshift distribution of LoTSS deep field radio sources, the full wide area LoTSS will eventually cover an effective (source weighted) comoving volume of about 10 h−3 Gpc3.
MIGHTEE: the continuum survey Data Release 1
Monthly Notices of the Royal Astronomical Society Oxford University Press 536:3 (2024) 2187-2211
Abstract:
The MeerKAT International GHz Tiered Extragalactic Exploration Survey (MIGHTEE) is one of the large survey projects using the MeerKAT telescope, covering four fields that have a wealth of ancillary data available. We present Data Release 1 of the MIGHTEE continuum survey, releasing total intensity images and catalogues over ∼20 deg2, across three fields at ∼1.2-1.3 GHz. This includes 4.2 deg2 over the Cosmic Evolution Survey (COSMOS) field, 14.4 deg2 over the XMM Large-Scale Structure (XMM-LSS) field and deeper imaging over 1.5 deg2 of the Extended Chandra Deep Field South (CDFS). We release images at both a lower resolution (7–9 arcsec) and higher resolution (∼5 arcsec). These images have central rms sensitivities of ∼1.3 −2.7 μJy beam−1 (∼1.2 −3.6 μJy beam−1) in the lower (higher) resolution images respectively. We also release catalogues comprised of ∼144 000 (∼114 000) sources using the lower (higher) resolution images. We compare the astrometry and flux-density calibration with the Early Science data in the COSMOS and XMM-LSS fields and previous radio observations in the CDFS field, finding broad agreement. Furthermore, we extend the source counts at the ∼10 μJy level to these larger areas (∼20 deg2) and, using the areal coverage of MIGHTEE we measure the sample variance for differing areas of sky. We find a typical sample variance of 10-20percnt for 0.3 and 0.5 sq. deg. sub-regions at S1.4 ≤ 200 μJy, which increases at brighter flux densities, given the lower source density and expected higher galaxy bias for these sources.NOEMA formIng Cluster survEy (NICE): Characterizing eight massive galaxy groups at 1.5 < z < 4 in the COSMOS field
Astronomy & Astrophysics EDP Sciences 690 (2024) a55
Probabilistic and progressive deblended far-infrared and sub-millimetre point source catalogues
Astronomy & Astrophysics EDP Sciences 688 (2024) a20
Cosmology from LOFAR Two-metre Sky Survey Data Release 2: Cross-correlation with the cosmic microwave background (Corrigendum)
Astronomy & Astrophysics EDP Sciences 686 (2024) c2