Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Catherine Hale

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • The Square Kilometre Array (SKA)
catherine.hale@physics.ox.ac.uk
Denys Wilkinson Building, room 464
  • About
  • Publications

DEVILS/MIGHTEE/GAMA/DINGO: the impact of SFR time-scales on the SFR-radio luminosity correlation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:1 (2024) 708-727

Authors:

Robin HW Cook, Luke JM Davies, Jonghwan Rhee, Catherine L Hale, Sabine Bellstedt, Jessica E Thorne, Ivan Delvecchio, Jordan D Collier, Richard Dodson, Simon P Driver, Benne W Holwerda, Matt J Jarvis, Kenda Knowles, Claudia Lagos, Natasha Maddox, Martin Meyer, Aaron SG Robotham, Sambit Roychowdhury, Kristof Rozgonyi, Nicholas Seymour, Malgorzata Siudek, Matthew Whiting, Imogen Whittam
More details from the publisher
More details

MIGHTEE: multi-wavelength counterparts in the COSMOS field

Monthly Notices of the Royal Astronomical Society Oxford University Press 527:2 (2023) 3231-3245

Authors:

Imogen H Whittam, Matthew Prescott, Catherine L Hale, Matthew J Jarvis, Ian Heywood, Rebecca A Bowler, Peter W Hatfield, Rohan J Varadaraj

Abstract:

In this paper, we combine the Early Science radio continuum data from the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey, with optical and near-infrared data and release the cross-matched catalogues. The radio data used in this work covers 0.86 deg2 of the COSMOS field, reaches a thermal noise of 1.7 μJy beam−1 and contains 6102 radio components. We visually inspect and cross-match the radio sample with optical and near-infrared data from the Hyper Suprime-Cam (HSC) and UltraVISTA surveys. This allows the properties of active galactic nuclei and star-forming populations of galaxies to be probed out to z ≈ 5. Additionally, we use the likelihood ratio method to automatically cross-match the radio and optical catalogues and compare this to the visually cross-matched catalogue. We find that 94 per cent of our radio source catalogue can be matched with this method, with a reliability of 95 per cent. We proceed to show that visual classification will still remain an essential process for the cross-matching of complex and extended radio sources. In the near future, the MIGHTEE survey will be expanded in area to cover a total of ∼20 deg2; thus the combination of automated and visual identification will be critical. We compare the redshift distribution of SFG and AGN to the SKADS and T-RECS simulations and find more AGN than predicted at z ∼ 1.
More details from the publisher
Details from ORA
More details
More details
More details

MIGHTEE: multi-wavelength counterparts in the COSMOS field

(2023)

Authors:

IH Whittam, M Prescott, CL Hale, MJ Jarvis, I Heywood, Fangxia An, M Glowacki, N Maddox, L Marchetti, LK Morabito, NJ Adams, RAA Bowler, PW Hatfield, RG Varadaraj, J Collier, B Frank, AR Taylor, MG Santos, M Vaccari, J Afonso, Y Ao, J Delhaize, K Knowles, S Kolwa, SM Randriamampandry, Z Randriamanakoto, O Smirnov, DJB Smith, SV White
More details from the publisher
Details from ArXiV

Cosmology from LOFAR Two-metre Sky Survey data release 2: angular clustering of radio sources

Monthly Notices of the Royal Astronomical Society Oxford University Press 527:3 (2023) 6540-6568

Authors:

Cl Hale, Dj Schwarz, Pn Best, Sj Nakoneczny, David Alonso, D Bacon, L Böhme, N Bhardwaj, M Bilicki, S Camera, Cs Heneka, M Pashapour-Ahmadabadi, P Tiwari, J Zheng, Kj Duncan, Mj Jarvis, R Kondapally, M Magliocchetti, Hja Rottgering, Tw Shimwell

Abstract:

Covering ∼ 5600 deg2 to rms sensitivities of ∼70−100 μJy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of 0.5 ≤ θ < 5◦, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of bC = 2.14+0.22 −0.20 (assuming constant bias) and bE(z = 0) = 1.79+0.15 −0.14 (for an evolving model, inversely proportional to the growth factor), corresponding to bE = 2.81+0.24 −0.22 at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to bC = 2.02+0.17 −0.16 and bE(z = 0) = 1.67+0.12 −0.12 when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.
More details from the publisher
Details from ORA
More details
More details
More details

The LOFAR Two-metre Sky Survey

Astronomy & Astrophysics EDP Sciences 659 (2022) a1

Authors:

TW Shimwell, MJ Hardcastle, C Tasse, PN Best, HJA Röttgering, WL Williams, A Botteon, A Drabent, A Mechev, A Shulevski, RJ van Weeren, L Bester, M Brüggen, G Brunetti, JR Callingham, KT Chyży, JE Conway, TJ Dijkema, K Duncan, F de Gasperin, CL Hale, M Haverkorn, B Hugo, N Jackson, M Mevius, GK Miley, LK Morabito, R Morganti, A Offringa, JBR Oonk, D Rafferty, J Sabater, DJB Smith, DJ Schwarz, O Smirnov, SP O’Sullivan, H Vedantham, GJ White, JG Albert, L Alegre, B Asabere, DJ Bacon, A Bonafede, E Bonnassieux, M Brienza, M Bilicki, M Bonato, G Calistro Rivera, R Cassano, R Cochrane, JH Croston, V Cuciti, D Dallacasa, A Danezi, RJ Dettmar, G Di Gennaro, HW Edler, TA Enßlin, KL Emig, TMO Franzen, C García-Vergara, YG Grange, G Gürkan, M Hajduk, G Heald, V Heesen, DN Hoang, M Hoeft, C Horellou, M Iacobelli, M Jamrozy, V Jelić, R Kondapally, P Kukreti, M Kunert-Bajraszewska, M Magliocchetti, V Mahatma, K Małek, S Mandal, F Massaro, Z Meyer-Zhao, B Mingo, RIJ Mostert, DG Nair, SJ Nakoneczny, B Nikiel-Wroczyński, E Orrú, U Pajdosz-Śmierciak, T Pasini, I Prandoni, HE van Piggelen, K Rajpurohit, E Retana-Montenegro, CJ Riseley, A Rowlinson, A Saxena, C Schrijvers, F Sweijen, TM Siewert, R Timmerman, M Vaccari, J Vink, JL West, A Wołowska, X Zhang, J Zheng
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet