Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Catherine Hale

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • The Square Kilometre Array (SKA)
catherine.hale@physics.ox.ac.uk
Denys Wilkinson Building, room 464
  • About
  • Publications

The LOFAR Two-metre Sky Survey: Deep Fields Data Release 2

Astronomy & Astrophysics EDP Sciences 695 (2025) a80

Authors:

TW Shimwell, CL Hale, PN Best, A Botteon, A Drabent, MJ Hardcastle, V Jelić, JMGHJ de Jong, R Kondapally, HJA Röttgering, C Tasse, RJ van Weeren, WL Williams, A Bonafede, M Bondi, M Brüggen, G Brunetti, JR Callingham, F De Gasperin, KJ Duncan, C Horellou, S Iyer, I de Ruiter, K Małek, DG Nair, LK Morabito, I Prandoni, A Rowlinson, J Sabater, A Shulevski, DJB Smith, F Sweijen
More details from the publisher
More details

The jet paths of radio active galactic nuclei and their cluster weather

Astronomy & Astrophysics EDP Sciences 695 (2025) a178

Authors:

E Vardoulaki, V Backöfer, A Finoguenov, F Vazza, J Comparat, G Gozaliasl, IH Whittam, CL Hale, JR Weaver, AM Koekemoer, JD Collier, B Frank, I Heywood, S Sekhar, AR Taylor, S Pinjarkar, MJ Hardcastle, T Shimwell, M Hoeft, SV White, F An, F Tabatabaei, Z Randriamanakoto, MD Filipovic
More details from the publisher
More details

MIGHTEE: Exploring the relationship between spectral index, redshift and radio luminosity

Monthly Notices of the Royal Astronomical Society (2025) staf209

Authors:

Siddhant Pinjarkar, Martin J Hardcastle, Dharam V Lal, Daniel JB Smith, José Afonso, Davi Barbosa, Catherine L Hale, Matt J Jarvis, Sthabile Kolwa, Eric Murphy, Mattia Vaccari, Imogen H Whittam
More details from the publisher
More details

Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia (2025)

Authors:

K Tanidis, J Asorey, CS Saraf, CL Hale, B Bahr-Kalus, D Parkinson, S Camera, RP Norris, AM Hopkins, M Bilicki, N Gupta

Abstract:

We measured the harmonic-space power spectrum of galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from ℓ = 2 to 500. We applied two flux density cuts at 0.18 and 0.4mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18mJy cut to deviate for ℓ ≥ 250 due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at ∼5.5σ, irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias b(z) = bg and a constant amplitude galaxy bias b(z) = bg/D(z). By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at 0.18mJy (0.4mJy) with bg = 2.32-0.33+0.41 (2.18-0.25+0.17) and a constant amplitude bias with bg = 1.72-0.21+0.31 (1.78-0.15+0.22). When σ8 is a free parameter for the same models at 0.18mJy (0.4mJy) with the constant model we found σ8 = 0.68-0.14+0.16 (0.82 ±0.10), while with the constant amplitude model we measured σ8 = 0.61-0.20+0.18 (0.78-0.09+0.11), respectively. Our results agree at 1σ with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.
More details from the publisher

Radio galaxies in simba: a MIGHTEE comparison

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:3 (2024) 2873-2890

Authors:

Nicole L Thomas, Imogen H Whittam, Catherine L Hale, Leah K Morabito, Romeel Davé, Matt J Jarvis, Robin HW Cook
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet