Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Catherine Hale

Hintze Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • The Square Kilometre Array (SKA)
catherine.hale@physics.ox.ac.uk
Denys Wilkinson Building, room 464
  • About
  • Publications

The Evolutionary Map of the Universe pilot survey

Publications of the Astronomical Society of Australia Cambridge University Press (CUP) 38 (2021) e046

Authors:

Ray P Norris, Joshua Marvil, JD Collier, Anna D Kapińska, Andrew N O’Brien, L Rudnick, Heinz Andernach, Jacobo Asorey, Michael JI Brown, Marcus Brüggen, Evan Crawford, Jayanne English, Syed Faisal ur Rahman, Miroslav D Filipović, Yjan Gordon, Gülay Gürkan, Catherine Hale, Andrew M Hopkins, Minh T Huynh, Kim HyeongHan, M James Jee, Bärbel S Koribalski, Emil Lenc, Kieran Luken, David Parkinson, Isabella Prandoni, Wasim Raja, Thomas H Reiprich, Christopher J Riseley, Stanislav S Shabala, Jaimie R Sheil, Tessa Vernstrom, Matthew T Whiting, James R Allison, CS Anderson, Lewis Ball, Martin Bell, John Bunton, TJ Galvin, Neeraj Gupta, Aidan Hotan, Colin Jacka, Peter J Macgregor, Elizabeth K Mahony, Umberto Maio, Vanessa Moss, M Pandey-Pommier, Maxim A Voronkov
More details from the publisher
More details

Non-Gaussianity constraints using future radio continuum surveys and the multitracer technique

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:1 (2019) 1513-1522

Authors:

Zahra Gomes, Stefano Camera, Matthew Jarvis, Catherine Hale, José Fonseca

Abstract:

Tighter constraints on measurements of primordial non-Gaussianity (PNG) will allow the differentiation of inflationary scenarios. The cosmic microwave background bispectrum – the standard method of measuring the local non-Gaussianity – is limited by cosmic variance. Therefore, it is sensible to investigate measurements of non-Gaussianity using the large-scale structure. This can be done by investigating the effects of non-Gaussianity on the power spectrum on large scales. In this study, we forecast the constraints on the local PNG parameter fNL that can be obtained with future radio surveys. We utilize the multitracer method that reduces the effect of cosmic variance and takes advantage of the multiple radio galaxy populations that are differently biased tracers of the same underlying dark matter distribution. Improvements on previous work include the use of observational bias and halo mass estimates, updated simulations, and realistic photometric redshift expectations, thus producing more realistic forecasts. Combinations of Square Kilometre Array simulations and radio observations were used as well as different redshift ranges and redshift bin sizes. It was found that in the most realistic case the 1σ error on fNL falls within the range 4.07–6.58, rivalling the tightest constraints currently available.
More details from the publisher
Details from ORA
More details

The environment and host haloes of the brightest z~6 Lyman-break galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 477:3 (2018) 3760-3774

Authors:

Peter Hatfield, Rebecca Bowler, Matthew Jarvis, Catherine Hale

Abstract:

By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright ($-22.7
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field

Monthly Notices of the Royal Astronomical Society Oxford University Press 474:3 (2017) 4133-4150

Authors:

Catherine L Hale, Matthew J Jarvis, I Delvecchio, Peter W Hatfield, M Novak, V Smolcic, G Zamorani

Abstract:

Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over $\sim 2 \ \mathrm{deg}^2$ of the COSMOS field. We split the radio source population into Star Forming Galaxies (SFGs) and Active Galactic Nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to $z<1$, we find SFGs have a bias, $b = 1.5 ^{+0.1}_{-0.2}$, at a median redshift of $z=0.62$. On the other hand, AGN are significantly more strongly clustered with $b = 2.1\pm 0.2$ at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low-accretion rate AGN are more clustered ($b = 2.9 \pm 0.3$) than high-accretion rate AGN ($b = 1.8^{+0.4}_{-0.5}$) at the same redshift ($z \sim 0.7$), suggesting that low-accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low-accretion rate AGN appear to reside in halo masses of $M_{h} \sim 3-4 \times 10^{13}h^{-1}$M$_{\odot}$ at all redshifts. On the other hand, the efficient accreters reside in haloes of $M_{h} \sim 1-2 \times 10^{13}h^{-1}$M$_{\odot}$ at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at $z \ge 1$ compared to $z<1$.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet