Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Topological Magnetism Group
Thorsten.Hesjedal@physics.ox.ac.uk
  • About
  • Publications

Manipulation of skyrmion motion by magnetic field gradients

(2026)

Abstract:

Full size CCD camera videos for https://www.nature.com/articles/s41467-018-04563-4

The 2026 Skyrmionics Roadmap

(2026)

Authors:

Sabri Koraltan, Claas Abert, Manfred Albrecht, Maria Azhar, Christian Back, Helene Bea, Max T Birch, Stefan Bluegel, Olivier Boulle, Felix Buettner, Ping Che, Vincent Cros, Emily Darwin, Louise Desplat, Claire Donnelly, Haifeng Du, Karin Everschor-Sitte, Amalio Fernandez-Pacheco, Simone Finizio, Giovanni Finocchio, Markus Garst, Raphael Gruber, Dirk Grundler, Satoru Hayami, Thorsten Hesjedal, Axel Hoffmann, Alec Hrabec, Hans Josef Hug, Hariom Jani, Jagannath Jena, Wanjun Jiang, Javier Junquera, Kosuke Karube, Lisa-Marie Kern, Joo-Von Kim, Mathias Klaeui, Hidekazu Kurebayashi, Kai Litzius, Yizhou Liu, Martin Lonsky, Christopher H Marrows, Jan Masell, Stefan Mathias, Yuriy Mokrousov, Stuart SP Parkin, Bastian Pfau, Paolo G Radaelli, Florin Radu, Ramamoorthy Ramesh, Nicolas Reyren

Materials for quantum technologies: A roadmap for spin and topology

Applied Physics Reviews AIP Publishing 12:4 (2025) 41328

Authors:

N Banerjee, C Bell, C Ciccarelli, T Hesjedal, F Johnson, H Kurebayashi, Ta Moore, C Moutafis, Hl Stern, Ij Vera-Marun, J Wade, C Barton, Mr Connolly, Nj Curson, K Fallon, Aj Fisher, Da Gangloff, W Griggs, E Linfield, Ch Marrows, A Rossi, F Schindler, J Smith, T Thomson, O Kazakova

Abstract:

<jats:p>In this perspective article, we explore some of the promising spin and topology material platforms (e.g., spins in semiconductors and superconductors, skyrmionic, topological, and two-dimensional materials) being developed for such quantum components as qubits, superconducting memories, sensing, and metrological standards, and discuss their figures of merit. Spin- and topology-related quantum phenomena have several advantages, including high coherence time, topological protection and stability, low error rate, relative ease of engineering and control, and simple initiation and readout. However, the relevant technologies are at different stages of research and development, and here, we discuss their state-of-the-art, potential applications, challenges, and solutions.</jats:p>
More details from the publisher
More details

Microscopic observation of nonergodic states in two-dimensional nontopological bubble lattices

Physical Review B American Physical Society (APS) 112:21 (2025) 214424

Authors:

S Pylypenko, M Winter, Uk Rößler, D Pohl, R Kyrychenko, Mc Rahn, B Achinuq, Jr Bollard, P Vir, G van der Laan, T Hesjedal, J Schultz, B Rellinghaus, C Felser, A Lubk

Abstract:

Disordered two-dimensional (2D) lattices, including hexatic and various glassy states, are observed in a wide range of 2D systems including colloidal nanoparticle assemblies and fluxon lattices. Their disordered nature determines the stability and mobility of these systems, as well as their response to the external stimuli. Here we report on the controlled creation and characterization of a disordered 2D lattice of nontopological magnetic bubbles in the noncentrosymmetric ferrimagnetic alloy Mn1.4PtSn. By analyzing the type and frequency of fundamental lattice defects, such as dislocations, the orientational correlation, as well as the induced motion of the lattice in an external field, a nonergodic glassy state, stabilized by directional application of an external field, is revealed.
More details from the publisher
More details

Structural and Magnetic Properties of Sputtered Chromium-Doped Sb2Te3 Thin Films

Crystals MDPI 15:10 (2025) 896-896

Authors:

Joshua Bibby, Angadjit Singh, Emily Heppell, Jack Bollard, Barat Achinuq, Julio Alves do Nascimento, Connor Murrill, Vlado K Lazarov, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

Magnetron sputtering offers a scalable route to magnetic topological insulators (MTIs) based on Cr-doped Sb2Te3. We combine a range of X-ray diffraction (XRD), reciprocal-space mapping (RSM), scanning transmission electron microscopy (STEM), scanning TEM-energy-dispersive X-ray spectroscopy (STEM-EDS), and X-ray absorption spectroscopy, and X-ray magnetic circular dichroism (XAS/XMCD) techniques to study the structure and magnetism of Cr-doped Sb2Te3 films. Symmetric θ-2θ XRD and RSM establish a solubility window. Layered tetradymite order persists up to ∼10 at.-% Cr, while higher doping yields CrTe/Cr2Te3 secondary phases. STEM reveals nanocrystalline layered stacking at low Cr and loss of long-range layering at higher Cr concentrations, consistent with XRD/RSM. Magnetometry on a 6% film shows soft ferromagnetism at 5 K. XAS and XMCD at the Cr L2,3 edges exhibits a depth dependence: total electron yield (TE; surface sensitive) shows both nominal Cr2+ and Cr3+, whereas fluorescence yield (FY; bulk sensitive) shows a much higher Cr2+ weight. Sum rules applied to TEY give mL=(0.20±0.04) μB/Cr, and mS=(1.6±0.2) μB/Cr, whereby we note that the applied maximum field (3 T) likely underestimates mS. These results define a practical growth window and outline key parameters for MTI films.
More details from the publisher
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet