Tunable chiral magneto-transport through band structure engineering in magnetic topological insulators Mn(Bi1-xSbx)₂Te₄
Science advances 11:20 (2025) eadt6084-eadt6084
Abstract:
Berry curvature and spin texture are representative tuning parameters that govern spin-orbit coupling-related physics and are also the foundation for future device applications. Here, we investigate the impact of the Sb-to-Bi ratio on shaping the electronic band structure and its correlated first- and second-harmonic magneto-transport signals in the intrinsic magnetic topological insulator Mn(Bi1-xSbx)2Te4. First-principles calculations reveal that the introduction of Sb not only triggers a topological phase transition but also changes the integral of the Berry curvature at the shifted Fermi level, which leads to the reversal of the anomalous Hall resistance polarity for Sb fractions x > 0.67. Moreover, it also induces the opposite spin splitting of the valence bands compared to the Sb-free host, and the resulting clockwise/counterclockwise spin chirality gives rise to a tunable unidirectional second-harmonic anomalous Hall response. Our findings pave the way for constructing chiral spin-orbitronic devices through band structure engineering.Unusually High Occupation of Co 3d State in Magnetic Weyl Semimetal Co₃Sn₂S₂
ACS nano 19:9 (2025) 8561-8570
Abstract:
The physical properties of magnetic topological materials are strongly influenced by their nontrivial band topology coupled with the magnetic structure. Co3Sn2S2 is a ferromagnetic kagome Weyl semimetal displaying giant intrinsic anomalous Hall effect which can be further tuned via elemental doping, such as Ni substitution for Co. Despite significant interest, the exact valency of Co and the magnetic order of the Ni dopants remained unclear. Here, we report a study of Ni-doped Co3Sn2S2 single crystals using synchrotron-based X-ray magnetic circular dichroism (XMCD), X-ray photoelectron emission microscopy (XPEEM), and hard/soft X-ray photoemission spectroscopy (XPS) techniques. We confirm the presence of spin-dominated magnetism from Co in the host material, and also the establishment of ferromagnetic order from the Ni dopant. The oxygen-free photoemission spectrum of the Co 2p core levels in the crystal well resembles that of a metallic Co film, indicating a Co0+ valency. Surprisingly, we find the electron filling in the Co 3d state can reach 8.7-9.0 electrons in these single crystals. Our results highlight the importance of element-specific X-ray spectroscopy in understanding the electronic and magnetic properties that are fundamental to a heavily studied Weyl semimetal, which could aid in developing future spintronic applications based on magnetic topological materials.Magnetic x-ray spectroscopy of Gd-doped EuO thin films
Physical Review Materials American Physical Society 9 (2025) 024410
Abstract:
We present a detailed x-ray magnetic circular dichroism (XMCD) study of the magnetic properties of Gd-doped EuO thin films, synthesized via molecular-beam epitaxy with Gd doping levels up to over 12%. The impact of Gd doping on the electronic and magnetic behavior of EuO is studied using XMCD and magnetometry. Gd doping significantly enhances the Curie temperature (𝑇C) from 69 K in undoped EuO to over 120 K, driven by increased carrier density, while preserving the high quality of the single-crystalline films. At higher doping levels, a plateau in 𝑇C is observed, which is attributed to the formation of Eu-Gd nearest-neighbor pairs that limit dopant activation. We also observe a distinctive “double-dome” structure in the temperature-dependent magnetization, which we attribute to both the ferromagnetic ordering of Eu 4𝑓 moments at lower temperatures and the influence of conduction electrons via 4𝑓−5𝑑 exchange interactions at higher temperatures. These findings provide key insights into the mechanisms of carrier-induced magnetic transitions.Controllable magnetism and an anomalous Hall effect in (Bi₁₋ₓSbₓ)₂Te₃-intercalated MnBi₂Te₄ multilayers.
Nanoscale (2025)
Abstract:
MnBi2Te4-based superlattices not only enrich the materials family of magnetic topological insulators, but also offer a platform for tailoring magnetic properties and interlayer magnetic coupling through the strategic insertion layer design. Here, we present the electrical and magnetic characterization of (Bi1-xSbx)2Te3-intercalated MnBi2Te4 multilayers grown by molecular beam epitaxy. By precisely adjusting the Sb-to-Bi ratio in the spacer layer, the magneto-transport response is modulated, unveiling the critical role of Fermi level tuning in optimizing the anomalous Hall signal and reconfiguring the magnetic ground state. Moreover, by varying the interlayer thickness, tunable magnetic coupling is achieved, enabling precise control over ferromagnetic and antiferromagnetic components. These findings pave the way for the exploration of versatile magnetic topological phases in quantum materials systems.Microscopic Observation of Non-Ergodic States in Two-Dimensional Non-Topological Bubble Lattices
(2025)