Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Tunable chiral magneto-transport through band structure engineering in magnetic topological insulators Mn(Bi1-xSbx)₂Te₄

Science advances 11:20 (2025) eadt6084-eadt6084

Authors:

Peng Chen, Puyang Huang, Zeyu Li, Jieyi Liu, Qi Yao, Qiang Sun, Ang Li, Xinqi Liu, Yifan Zhang, Xinyu Cai, Jiuming Liu, Liyang Liao, Guanying Yang, Zhongkai Liu, Yumeng Yang, Xiaodong Han, Jin Zou, Thorsten Hesjedal, Zhenhua Qiao, Xufeng Kou

Abstract:

Berry curvature and spin texture are representative tuning parameters that govern spin-orbit coupling-related physics and are also the foundation for future device applications. Here, we investigate the impact of the Sb-to-Bi ratio on shaping the electronic band structure and its correlated first- and second-harmonic magneto-transport signals in the intrinsic magnetic topological insulator Mn(Bi1-xSbx)2Te4. First-principles calculations reveal that the introduction of Sb not only triggers a topological phase transition but also changes the integral of the Berry curvature at the shifted Fermi level, which leads to the reversal of the anomalous Hall resistance polarity for Sb fractions x > 0.67. Moreover, it also induces the opposite spin splitting of the valence bands compared to the Sb-free host, and the resulting clockwise/counterclockwise spin chirality gives rise to a tunable unidirectional second-harmonic anomalous Hall response. Our findings pave the way for constructing chiral spin-orbitronic devices through band structure engineering.
More details from the publisher
More details

Unusually High Occupation of Co 3d State in Magnetic Weyl Semimetal Co₃Sn₂S₂

ACS nano 19:9 (2025) 8561-8570

Authors:

Jieyi Liu, Yiheng Yang, Jianlei Shen, Defa Liu, Gohil Singh Thakur, Charles Guillemard, Alevtina Smekhova, Houke Chen, Deepnarayan Biswas, Manuel Valvidares, Enke Liu, Claudia Felser, Tien-Lin Lee, Thorsten Hesjedal, Yulin Chen, Gerrit van der Laan

Abstract:

The physical properties of magnetic topological materials are strongly influenced by their nontrivial band topology coupled with the magnetic structure. Co3Sn2S2 is a ferromagnetic kagome Weyl semimetal displaying giant intrinsic anomalous Hall effect which can be further tuned via elemental doping, such as Ni substitution for Co. Despite significant interest, the exact valency of Co and the magnetic order of the Ni dopants remained unclear. Here, we report a study of Ni-doped Co3Sn2S2 single crystals using synchrotron-based X-ray magnetic circular dichroism (XMCD), X-ray photoelectron emission microscopy (XPEEM), and hard/soft X-ray photoemission spectroscopy (XPS) techniques. We confirm the presence of spin-dominated magnetism from Co in the host material, and also the establishment of ferromagnetic order from the Ni dopant. The oxygen-free photoemission spectrum of the Co 2p core levels in the crystal well resembles that of a metallic Co film, indicating a Co0+ valency. Surprisingly, we find the electron filling in the Co 3d state can reach 8.7-9.0 electrons in these single crystals. Our results highlight the importance of element-specific X-ray spectroscopy in understanding the electronic and magnetic properties that are fundamental to a heavily studied Weyl semimetal, which could aid in developing future spintronic applications based on magnetic topological materials.
More details from the publisher
More details
More details

Magnetic x-ray spectroscopy of Gd-doped EuO thin films

Physical Review Materials American Physical Society 9 (2025) 024410

Authors:

Ethan Arnold, JM Riley, LB Duffy, AI Figueroa, R Held, KM Shen, DG Schlom, PDC King, M Hoesch, Gerrit van der Laan, THORSTEN HESJEDAL

Abstract:

We present a detailed x-ray magnetic circular dichroism (XMCD) study of the magnetic properties of Gd-doped EuO thin films, synthesized via molecular-beam epitaxy with Gd doping levels up to over 12%. The impact of Gd doping on the electronic and magnetic behavior of EuO is studied using XMCD and magnetometry. Gd doping significantly enhances the Curie temperature (𝑇C) from 69 K in undoped EuO to over 120 K, driven by increased carrier density, while preserving the high quality of the single-crystalline films. At higher doping levels, a plateau in 𝑇C is observed, which is attributed to the formation of Eu-Gd nearest-neighbor pairs that limit dopant activation. We also observe a distinctive “double-dome” structure in the temperature-dependent magnetization, which we attribute to both the ferromagnetic ordering of Eu 4⁢𝑓 moments at lower temperatures and the influence of conduction electrons via 4⁢𝑓−5⁢𝑑 exchange interactions at higher temperatures. These findings provide key insights into the mechanisms of carrier-induced magnetic transitions.
More details from the publisher
More details

Controllable magnetism and an anomalous Hall effect in (Bi₁₋ₓSbₓ)₂Te₃-intercalated MnBi₂Te₄ multilayers.

Nanoscale (2025)

Authors:

Peng Chen, Jieyi Liu, Yifan Zhang, Puyang Huang, Jack Bollard, Yiheng Yang, Ethan L Arnold, Xinqi Liu, Qi Yao, Fadi Choueikani, Gerrit van der Laan, Thorsten Hesjedal, Xufeng Kou

Abstract:

MnBi2Te4-based superlattices not only enrich the materials family of magnetic topological insulators, but also offer a platform for tailoring magnetic properties and interlayer magnetic coupling through the strategic insertion layer design. Here, we present the electrical and magnetic characterization of (Bi1-xSbx)2Te3-intercalated MnBi2Te4 multilayers grown by molecular beam epitaxy. By precisely adjusting the Sb-to-Bi ratio in the spacer layer, the magneto-transport response is modulated, unveiling the critical role of Fermi level tuning in optimizing the anomalous Hall signal and reconfiguring the magnetic ground state. Moreover, by varying the interlayer thickness, tunable magnetic coupling is achieved, enabling precise control over ferromagnetic and antiferromagnetic components. These findings pave the way for the exploration of versatile magnetic topological phases in quantum materials systems.
More details from the publisher
Details from ORA
More details
More details

Microscopic Observation of Non-Ergodic States in Two-Dimensional Non-Topological Bubble Lattices

(2025)

Authors:

S Pylypenko, M Winter, UK Rößler, D Pohl, R Kyrychenko, MC Rahn, B Achinuq, JR Bollard, P Vir, G van der Laan, T Hesjedal, J Schultz, B Rellinghaus, C Felser, A Lubk
More details from the publisher
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet