Radio source extraction with ProFound
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:3 (2019) 3971-3989
Abstract:
In the current era of radio astronomy, continuum surveys observe a multitude of objects with complex morphologies and sizes, and are not limited to observing point sources. Typical radio source extraction software generates catalogues by using Gaussian components to form a model of the emission. This may not be well suited to complicated jet structures and extended emission, particularly in the era of interferometers with a high density of short baselines, which are sensitive to extended emission. In this paper, we investigate how the optically motivated source detection package ProFound (Robotham et al. 2018) may be used to model radio emission of both complicated and point-like radio sources. We use a combination of observations and simulations to investigate how ProFound compares to other source extractor packages used for radio surveys. We find that ProFound can accurately recover both the flux densities of simulated Gaussian sources as well as extended radio galaxies. ProFound can create models that trace the complicated nature of these extended galaxies, which we show is not necessarily the case with other source extraction software. Our work suggests that our knowledge of the emission from extended radio objects may be both over or under-estimated using traditional software. We suggest that ProFound offers a useful alternative to the fitting of Gaussian components for generating catalogues from current and future radio surveys. Furthermore, ProFound's multiwavelength capabilities will be useful in investigating radio sources in combination with multiwavelength data.Disk-jet coupling in the 2017/2018 outburst of the Galactic black hole candidate X-ray binary MAXI J1535-571
(2019)
LOFAR observations of the XMM-LSS field
Astronomy and Astrophysics EDP Sciences 622 (2019) A4
Abstract:
We present observations of the XMM Large-Scale Structure (XMM-LSS) field observed with the LOw Frequency ARray (LOFAR) at 120–168 MHz. Centred at a J2000 declination of −4.5°, this is a challenging field to observe with LOFAR because of its low elevation with respect to the array. The low elevation of this field reduces the effective collecting area of the telescope, thereby reducing sensitivity. This low elevation also causes the primary beam to be elongated in the north-south direction, which can introduce side lobes in the synthesised beam in this direction. However the XMM-LSS field is a key field to study because of the wealth of ancillary information, encompassing most of the electromagnetic spectrum. The field was observed for a total of 12 h from three four-hour LOFAR tracks using the Dutch array. The final image presented encompasses ∼27 deg2, which is the region of the observations with a >50% primary beam response. Once combined, the observations reach a central rms of 280 μJy beam−1 at 144 MHz and have an angular resolution of 7.5 × 8.5″. We present our catalogue of detected sources and investigate how our observations compare to previous radio observations. This includes investigating the flux scale calibration of these observations compared to previous measurements, the implied spectral indices of the sources, the observed source counts and corrections to obtain the true source counts, and finally the clustering of the observed radio sources.Towards the first detection of strongly lensed H i emission
Monthly Notices of the Royal Astronomical Society Oxford University Press 484:3 (2019) 3681-3690
Molecular gas in two companion cluster galaxies at z = 1.2 (vol 617, A103, 2018)
ASTRONOMY & ASTROPHYSICS 620 (2018) ARTN C4