Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
uv plot

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
github.com/IanHeywood
  • About
  • Galactic Centre Images
  • Publications

Evidence for a jet and outflow from Sgr A*: a continuum and spectral line study

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 499:3 (2020) 3909-3931

Authors:

F Yusef-Zadeh, M Royster, M Wardle, W Cotton, D Kunneriath, I Heywood, J Michail
More details from the publisher
More details
More details

Unusual Galactic H ii Regions at the Intersection of the Central Molecular Zone and the Far Dust Lane

The Astrophysical Journal American Astronomical Society 901:1 (2020) 51

Authors:

LD Anderson, MC Sormani, Adam Ginsburg, Simon CO Glover, I Heywood, I Rammala, F Schuller, T Csengeri, JS Urquhart, Leonardo Bronfman
More details from the publisher
More details

A MeerKAT survey of nearby nova-like cataclysmic variables

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 496:3 (2020) 2542-2557

Authors:

DM Hewitt, ML Pretorius, PA Woudt, E Tremou, JCA Miller-Jones, C Knigge, N Castro Segura, DRA Williams, RP Fender, R Armstrong, P Groot, I Heywood, A Horesh, AJ van der Horst, E Koerding, VA McBride, KP Mooley, A Rowlinson, B Stappers, RAMJ Wijers
More details from the publisher

The relation between the diffuse X-ray luminosity and the radio power of the central AGN in galaxy groups

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 497:2 (2020) 2163-2174

Authors:

T Pasini, M Brueggen, F de Gasperin, L Birzan, E O'Sullivan, A Finoguenov, Imogen Whittam, Ian Heywood, Matt Jarvis, M Gitti, F Brighenti, Jd Collier, G Gozaliasl

Abstract:

Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.
More details from the publisher
Details from ORA
More details
Details from ArXiV

VLA imaging of the XMM-LSS/VIDEO deep field at 1–2 GHz

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 496:3 (2020) 3469-3481

Authors:

Ian Heywood, Matt Jarvis, Cl Hale, S Makhathini, Ja Peters, Mll Sebokolodi, Om Smirnov

Abstract:

Modern radio telescopes are routinely reaching depths where normal star-forming galaxies are the dominant observed population. Realizing the potential of radio as a tracer of star formation and black hole activity over cosmic time involves achieving such depths over representative volumes, with radio forming part of a larger multiwavelength campaign. In pursuit of this, we used the Karl G. Jansky Very Large Array (VLA) to image ∼5 deg2 of the VIDEO/XMM-LSS extragalactic deep field at 1–2 GHz. We achieve a median depth of 16 µJy beam−1 with an angular resolution of 4.5 arcsec. Comparisons with existing radio observations of XMM-LSS showcase the improved survey speed of the upgraded VLA: we cover 2.5 times the area and increase the depth by ∼20 per cent in 40 per cent of the time. Direction-dependent calibration and wide-field imaging were required to suppress the error patterns from off-axis sources of even modest brightness. We derive a catalogue containing 5762 sources from the final mosaic. Sub-band imaging provides in-band spectral indices for 3458 (60 per cent) sources, with the average spectrum becoming flatter than the canonical synchrotron slope below 1 mJy. Positional and flux density accuracy of the observations, and the differential source counts are in excellent agreement with those of existing measurements. A public release of the images and catalogue accompanies this article.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet