Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
uv plot

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
github.com/IanHeywood
  • About
  • Galactic Centre Images
  • Publications

The curious case of the "Heartworm" Nebula

Astrophysical Journal IOP Publishing 934:1 (2022) 78

Authors:

WD Cotton, F Camilo, W Becker, JJ Condon, J Forbrich, Ian Heywood, B Hugo, S Legodi, T Mauch, P Predehl, P Slane, MA Thompson

Abstract:

The curious Galactic features near G357.2−0.2 were observed with the MeerKAT radio interferometer array in the UHF and L bands (0.56–1.68 GHz). There are two possibly related features: a newly identified faint heart-shaped partial shell (the "heart"), and a series of previously known but now much better imaged narrow, curved features (the "worm") interior to the heart. Polarized emission suggests that much of the emission is nonthermal and is embedded in a dense plasma. The filaments of the worm appear to be magnetic structures powered by embedded knots that are sites of particle acceleration. The morphology of the worm broadly resembles some known pulsar wind nebulae (PWNe) but there is no known pulsar or PWN which could be powering this structure. We also present eROSITA observations of the field; no part of the nebula is detected in X-rays, but the current limits do not preclude the existence of a pulsar/PWN of intermediate spin-down luminosity.
More details from the publisher
Details from ORA
More details

MIGHTEE: the nature of the radio-loud AGN population

ArXiv 2207.12379 (2022)

Authors:

IH Whittam, MJ Jarvis, CL Hale, M Prescott, LK Morabito, I Heywood, NJ Adams, J Afonso, Fangxia An, Y Ao, RA Bowler, JD Collier, RP Deane, J Delhaize, B Frank, M Glowacki, PW Hatfield, N Maddox, L Marchetti, AM Matthews, I Prandoni, S Randriamampandry, Z Randriamanakoto, DJB Smith, AR Taylor, NL Thomas, M Vaccari
Details from ArXiV

Statistical properties of the population of the Galactic centre filaments – II. The spacing between filaments

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:2 (2022) 3059-3093

Authors:

F Yusef-Zadeh, Rg Arendt, M Wardle, S Boldyrev, I Heywood, W Cotton, F Camilo

Abstract:

We carry out a population study of magnetized radio filaments in the Galactic centre using MeerKAT data by focusing on the spacing between the filaments that are grouped. The morphology of a sample of 43 groupings containing 174 magnetized radio filaments are presented. Many grouped filaments show harp-like, fragmented cometary tail-like, or loop-like structures in contrast to many straight filaments running mainly perpendicular to the Galactic plane. There are many striking examples of a single filament splitting into two prongs at a junction, suggestive of a flow of plasma along the filaments. Spatial variations in spectral index, brightness, bending, and sharpening along the filaments indicate that they are evolving on a 105-6-yr time-scale. The mean spacings between parallel filaments in a given grouping peaks at ∼16 arcsec. We argue by modeling that the filaments in a grouping all lie on the same plane and that the groupings are isotropically oriented in 3D space. One candidate for the origin of filamentation is interaction with an obstacle, which could be a compact radio source, before a filament splits and bends into multiple filaments. In this picture, the obstacle or sets the length scale of the separation between the filaments. Another possibility is synchrotron cooling instability occurring in cometary tails formed as a result of the interaction of cosmic ray driven Galactic centre outflow with obstacles such as stellar winds. In this picture, the mean spacing and the mean width of the filaments are expected to be a fraction of a parsec, consistent with observed spacing.
More details from the publisher
Details from ORA
More details
More details

A MeerKAT, e-MERLIN, HESS, and Swift search for persistent and transient emission associated with three localized FRBs

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:1 (2022) 1365-1379

Authors:

Jo Chibueze, M Caleb, L Spitler, H Ashkar, F Schussler, Bw Stappers, C Venter, I Heywood, Ams Richards, Dra Williams, M Kramer, R Beswick, Mc Bezuidenhout, Rp Breton, Ln Driessen, F Jankowski, Ef Keane, M Malenta, M Mickaliger, V Morello, H Qiu, K Rajwade, S Sanidas, M Surnis, Tw Scragg, Crh Walker, N Wrigley, F Aharonian, F Ait Benkhali, Eo Anguener, M Backes, V Baghmanyan, V Barbosa Martins, R Batzofin, Y Becherini, D Berge, M Bottcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, T Bulik, F Cangemi, S Caroff, S Casanova, J Catalano, M Cerruti, T Chand

Abstract:

We report on a search for persistent radio emission from the one-off fast radio burst (FRB) 20190714A, as well as from two repeating FRBs, 20190711A and 20171019A, using the MeerKAT radio telescope. For FRB 20171019A, we also conducted simultaneous observations with the High-Energy Stereoscopic System (H.E.S.S.) in very high-energy gamma rays and searched for signals in the ultraviolet, optical, and X-ray bands. For this FRB, we obtain a UV flux upper limit of 1.39 × 10-16 erg, cm-2, s-1Å-1, X-ray limit of ~6.6 × 10-14~erg, cm-2, s-1 and a limit on the very high energy gamma-ray flux Φ (E> 120, GeV) < 1.7× 10-12, erg, cm-2, s-1. We obtain a radio upper limit of ∼15 μJy beam-1 for persistent emission at the locations of both FRBs 20190711A and 20171019A with MeerKAT. However, we detected an almost unresolved (ratio of integrated flux to peak flux is ∼1.7 beam) radio emission, where the synthesized beam size was ∼8 arcsec size with a peak brightness of ∼ 53, μJy beam-1 at MeerKAT and ∼ 86, μ Jy beam-1 at e-MERLIN, possibly associated with FRB 20190714A at z = 0.2365. This represents the first detection of persistent continuum radio emission potentially associated with a (as-yet) non-repeating FRB. If the association is confirmed, one of the strongest remaining distinction between repeaters and non-repeaters would no longer be applicable. A parallel search for repeat bursts from these FRBs revealed no new detections down to a fluence of 0.08 Jy ms for a 1 ms duration burst.
More details from the publisher
Details from ORA
More details
More details

Discovery of a radio emitting neutron star with an ultra-long spin period of 76 seconds

(2022)

Authors:

Manisha Caleb, Ian Heywood, Kaustubh Rajwade, Mateusz Malenta, Benjamin Stappers, Ewan Barr, Weiwei Chen, Vincent Morello, Sotiris Sanidas, Jakob van den Eijnden, Michael Kramer, David Buckley, Jaco Brink, Sara Elisa Motta, Patrick Woudt, Patrick Weltevrede, Fabian Jankowski, Mayuresh Surnis, Sarah Buchner, Mechiel Christiaan Bezuidenhout, Laura Nicole Driessen, Rob Fender
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet