Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
  • About
  • Publications

MIGHTEE-H I: the first MeerKAT H I mass function from an untargeted interferometric survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:4 (2023) 5308-5319

Authors:

Anastasia A Ponomareva, Matt J Jarvis, Hengxing Pan, Natasha Maddox, Michael G Jones, Bradley S Frank, Sambatriniaina HA Rajohnson, Wanga Mulaudzi, Martin Meyer, Elizabeth AK Adams, Maarten Baes, Kelley M Hess, Sushma Kurapati, Isabella Prandoni, Francesco Sinigaglia, Kristine Spekkens, Madalina Tudorache, Ian Heywood, Jordan D Collier, Srikrishna Sekhar

Abstract:

We present the first measurement of the H I mass function (HIMF) using data from MeerKAT, based on 276 direct detections from the MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) Survey Early Science data covering a period of approximately a billion years (0 ≤ z ≤ 0.084). This is the first HIMF measured using interferometric data over non-group or cluster field, i.e. a deep blank field. We constrain the parameters of the Schechter function that describes the HIMF with two different methods: 1/Vmax and modified maximum likelihood (MML). We find a low-mass slope α=−1.29+0.37−0.26 , ‘knee’ mass log10(M∗/M⊙)=10.07+0.24−0.24 and normalization log10(ϕ∗/Mpc−3)=−2.34+0.32−0.36 (H0 = 67.4 km s−1 Mpc−1) for 1/Vmax , and α=−1.44+0.13−0.10 , ‘knee’ mass log10(M∗/M⊙)=10.22+0.10−0.13 and normalization log10(ϕ∗/Mpc−3)=−2.52+0.19−0.14 for MML. When using 1/Vmax we find both the low-mass slope and ‘knee’ mass to be consistent within 1σ with previous studies based on single-dish surveys. The cosmological mass density of H I is found to be slightly larger than previously reported: ΩHI=5.46+0.94−0.99×10−4h−167.4 from 1/Vmax and ΩHI=6.31+0.31−0.31×10−4h−167.4 from MML but consistent within the uncertainties. We find no evidence for evolution of the HIMF over the last billion years.
More details from the publisher
Details from ORA
More details

Bursts from Space: MeerKAT - The first citizen science project dedicated to commensal radio transients

(2023)

Authors:

Alex Andersson, Chris Lintott, Rob Fender, Joe Bright, Francesco Carotenuto, Laura Driessen, Mathilde Espinasse, Kelebogile Gaseahalwe, Ian Heywood, Alexander J van der Horst, Sara Motta, Lauren Rhodes, Evangelia Tremou, David RA Williams, Patrick Woudt, Xian Zhang, Steven Bloemen, Paul Groot, Paul Vreeswijk, Stefano Giarratana, Payaswini Saikia, Jonas Andersson, Lizzeth Ruiz Arroyo, Loïc Baert, Matthew Baumann, Wilfried Domainko, Thorsten Eschweiler, Tim Forsythe, Sauro Gaudenzi, Rachel Ann Grenier, Davide Iannone, Karla Lahoz, Kyle J Melville, Marianne De Sousa Nascimento, Leticia Navarro, Sai Parthasarathi, Piilonen, Najma Rahman, Jeffrey Smith, B Stewart, Newton Temoke, Chloe Tworek, Isabelle Whittle
More details from the publisher
Details from ArXiV

MIGHTEE-H i: possible interactions with the galaxy NGC 895

Monthly Notices of the Royal Astronomical Society Oxford University Press 521:4 (2023) 5177-5190

Authors:

B Namumba, J Román, J Falcón-Barroso, Jh Knapen, R Ianjamasimanana, E Naluminsa, Gig Józsa, M Korsaga, N Maddox, B Frank, S Sikhosana, S Legodi, C Carignan, Aa Ponomareva, T Jarrett, D Lucero, Om Smirnov, Jm Van Der Hulst, Dj Pisano, K Malek, L Marchetti, M Vaccari, M Jarvis, M Baes, M Meyer, Eak Adams, H Chen, J Delhaize, Sha Rajohnson, S Kurapati, I Heywood, L Verdes-Montenegro

Abstract:

The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (H i) is an excellent way to trace these interactions. Here, we present H i observations of the spiral galaxy NGC 895, which was previously thought to be isolated. High-sensitivity H i observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms and the two newly discovered H i companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_J022138.1-052631, which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC 895 is an actively star-forming galaxy with a SFR of 1.75 ± 0.09[M⊙/yr], a value typical for high-stellar mass galaxies on the star-forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC 895, and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both H i and optical to reveal a more complete picture of galaxy environments.
More details from the publisher
Details from ORA
More details
More details

The 2019 outburst of AMXP SAX J1808.4–3658 and radio follow up of MAXI J0911–655 and XTE J1701–462

Monthly Notices of the Royal Astronomical Society Oxford University Press 521:2 (2023) 2806-2813

Authors:

Kvs Gasealahwe, Im Monageng, Robert P Fender, Pa Woudt, Sara Elisa Motta, Jakob van den Eijnden, Dra Williams, Ian Heywood, S Bloemen, Pj Groot, P Vreeswijk, V McBride, M Klein-Wolt, E Kording, R Le Poole, D Pieterse, S de Wet

Abstract:

We present radio coverage of the 2019 outburst of the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4–3658, obtained with MeerKAT. We compare these data to contemporaneous X-ray and optical measurements in order to investigate the coupling between accretion and jet formation in this system, while the optical light curve provides greater detail of the outburst. The reflaring activity following the main outburst peak was associated with a radio re-brightening, indicating a strengthening of the jet in this phase of the outburst. We place quasi-simultaneous radio and X-ray measurements on the global radio:X-ray plane for X-ray binaries, and show they reside in the same region of luminosity space as previous outburst measurements, but significantly refine the correlation for this source. We also present upper limits on the radio emission from the AMXP MAXI J0911–655 and the transitional Z/Atoll-type transient XTE J1701–462. In the latter source, we also confirm that nearby large-scale structures reported in previous radio observations of the source are persistent over a period of ∼15 yr, and so are almost certainly background radio galaxies and not associated with the X-ray transient.
More details from the publisher
Details from ORA
More details

Search and Characterization of Remnant Radio Galaxies in the XMM-LSS Deep Field

The Astrophysical Journal American Astronomical Society 944:2 (2023) 176

Authors:

Sushant Dutta, Veeresh Singh, CH Ishwara Chandra, Yogesh Wadadekar, Abhijit Kayal, Ian Heywood
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet