Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Shows a degraded and a stable perovskite solar cell hold with blue gloves

Philippe Holzhey

Visitor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics
philippe.holzhey@physics.ox.ac.uk
Telephone: 82328
Robert Hooke Building, room G29
  • About
  • Publications

Charge Extraction Multilayers Enable Positive-Intrinsic-Negative Perovskite Solar Cells with Carbon Electrodes

ACS Energy Letters American Chemical Society (ACS) (2025) 2736-2742

Authors:

Tino Lukas, Seongrok Seo, Philippe Holzhey, Katherine Stewart, Charlie Henderson, Lukas Wagner, David Beynon, Trystan M Watson, Ji-Seon Kim, Markus Kohlstädt, Henry J Snaith
More details from the publisher
More details

Water- and heat-activated dynamic passivation for perovskite photovoltaics

Nature Springer Nature 632:8024 (2024) 294-300

Authors:

Wei-Ting Wang, Philippe Holzhey, Ning Zhou, Qiang Zhang, Suer Zhou, Elisabeth Duijnstee, Kevin J Rietwyk, Jeng-Yu Lin, Yijie Mu, Yanfeng Zhang, Udo Bach, Chun-Guey Wu, Hin-Lap Yip, Henry J Snaith, Shien-Ping Feng

Abstract:

Further improvements in perovskite solar cells require better control of ionic defects in the perovskite photoactive layer during the manufacturing stage and their usage. Here we report a living passivation strategy using a hindered urea/thiocarbamate bond Lewis acid–base material (HUBLA), where dynamic covalent bonds with water and heat-activated characteristics can dynamically heal the perovskite to ensure device performance and stability. Upon exposure to moisture or heat, HUBLA generates new agents and further passivates defects in the perovskite. This passivation strategy achieved high-performance devices with a power conversion efficiency (PCE) of 25.1 per cent. HUBLA devices retained 94 per cent of their initial PCE for approximately 1,500 hours of ageing at 85 degrees Celsius in nitrogen and maintained 88 per cent of their initial PCE after 1,000 hours of ageing at 85 degrees Celsius and 30 per cent relative humidity in air.
More details from the publisher
Details from ORA
More details
More details

A green solvent system for precursor phase-engineered sequential deposition of stable formamidinium lead triiodide for perovskite solar cells

(2024)

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alex Sheader, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Augustin KA Zaininger, James M Ball, M Greyson Christoforo, Nakita Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith
More details from the publisher
Details from ArXiV

Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells

Advanced Materials Wiley 35:30 (2023) e2211742

Authors:

Xinyi Shen, Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Karim A Elmestekawy, Zhongcheng Yuan, Pvgm Rathnayake, Stefano Bernardi, Akash Dasgupta, Ernestas Kasparavicius, Tadas Malinauskas, Pietro Caprioglio, Oleksandra Shargaieva, Yen-Hung Lin, Melissa M McCarthy, Eva Unger, Vytautas Getautis, Asaph Widmer-Cooper, Laura M Herz, Henry J Snaith

Abstract:

Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.
More details from the publisher
Details from ORA
More details
More details

Photovoltaic performance of FAPbI3 perovskite is hampered by intrinsic quantum confinement

ACS Energy Letters American Chemical Society 8:6 (2023) 2543-2551

Authors:

Karim A Elmestekawy, Benjamin M Gallant, Adam D Wright, Philippe Holzhey, Nakita K Noel, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)–dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells.

More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet