Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Ti:sapphire laser

Professor Simon Hooker

Professor of Atomic & Laser Physics

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser-plasma accelerator group
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Simon.Hooker@physics.ox.ac.uk
  • About
  • Publications

Hydrodynamic optical-field-ionized plasma channels

Physical Review E American Physical Society 97:5 (2018) 053203

Authors:

Robert J Shalloo, C Arran, L Corner, J Holloway, J Jonnerby, R Walczak, HM Milchberg, Simon Hooker

Abstract:

We present experiments and numerical simulations which demonstrate that fully-ionized, lowdensity plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization (OFI). Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0) = 1 × 1017 cm−3 and lowest-order modes of spot size WM ≈ 40 µm. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimetre of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 × 1017 cm−3 . ne(0) . 1 × 1018 cm−3 and 61 µm & WM & 33 µm. Low-density plasma channels of this type would appear to be well-suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Overview of the CLEAR plasma lens experiment

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018)

Authors:

CA Lindstrøm, KN Sjobak, E Adli, JH Röckemann, L Schaper, J Osterhoff, AE Dyson, SM Hooker, W Farabolini, D Gamba, R Corsini

Abstract:

© 2018 The Author(s). Discharge capillary-based active plasma lenses are a promising new technology for strongly focusing charged particle beams, especially when combined with novel high gradient acceleration methods. Still, many questions remain concerning such lenses, including their transverse field uniformity, limitations due to plasma wakefields and whether they can be combined in multi-lens lattices in a way to cancel chromaticity. These questions will be addressed in a new plasma lens experiment at the CLEAR User Facility at CERN. All the subsystems have been constructed, tested and integrated into the CLEAR beam line, and are ready for experiments starting late 2017.
More details from the publisher
Details from ORA
More details

Overview of the CLEAR plasma lens experiment

(2018)

Authors:

CA Lindstrøm, KN Sjobak, E Adli, J-H Röckemann, L Schaper, J Osterhoff, AE Dyson, SM Hooker, W Farabolini, D Gamba, R Corsini
More details from the publisher

Hydrodynamic, Optically-Field-Ionized (HOFI) Plasma Channels

(2018)

Authors:

Robert Shalloo, Christopher Arran, Laura Corner, James Holloway, Jakob Jonnerby, Roman Walczak, Howard Milchberg, Simon Hooker
More details from the publisher

High harmonic generation in gas-filled photonic crystal fibers

2017 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC 2017) Institute of Electrical and Electronics Engineers (2017)

Authors:

Florian Wiegandt, PN Anderson, F Yu, Daniel J Treacher, David T Lloyd, PJ Mosley, Simon M Hooker, Ian A Walmsley

Abstract:

High harmonic generation (HHG) is a promising tabletop source of coherent short wavelength radiation, with applications spanning science and engineering [1]. However, the low conversion efficiency and low average power of conventional few-kHz near-infrared (NIR) driving lasers limits the photon flux of such sources. Scaling this technique to MHz driving lasers requires strong focusing due to the limited pulse energy, and as a result the interaction volume is greatly reduced. It has been shown that this may be mitigated by restricting HHG to a photonic crystal fiber (PCF) [2, 3]. Here, we explore HHG in the latest generation of negative curvature PCFs [4] and achieve the highest photon energies to date.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet