Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Ti:sapphire laser

Professor Simon Hooker

Professor of Atomic & Laser Physics

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laser-plasma accelerator group
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Simon.Hooker@physics.ox.ac.uk
  • About
  • Publications

Quasi-phase-matched high harmonic generation using trains of uniformly-spaced ultrafast pulses

High Intensity Lasers and High Field Phenomena, HILAS 2012 (2012)

Authors:

K O'Keeffe, T Robinson, SM Hooker

Abstract:

We investigate quasi-phase-matching of high harmonic generation over a range of harmonic orders using trains of up to 8 uniformly-spaced counter-propagating pulses, produced using an array of birefringent crystals. © 2012 OSA.
More details from the publisher

Quasi-phase-matched high harmonic generation using trains of uniformly-spaced ultrafast pulses

Optics InfoBase Conference Papers (2011)

Authors:

K O'Keeffe, T Robinson, SM Hooker

Abstract:

We investigate quasi-phase-matching of high harmonic generation over a range of harmonic orders using trains of up to 8 uniformly-spaced counter-propagating pulses, produced using an array of birefringent crystals. © 2012 OSA.

High Harmonic Optical Generator (Polarization Beating 1/2)

(2011) UK Patent Application GB1117355.6

Authors:

LZ Liu, K O'Keeffe, SM Hooker

Time-resolved plasma temperature measurements in a laser-triggered hydrogen-filled capillary discharge waveguide

Plasma Sources Science and Technology 20:5 (2011)

Authors:

CJ Woolley, K O'Keeffe, HK Chung, SM Hooker

Abstract:

Temporally resolved, spatially integrated measurements of the temperature of the plasma channel formed by a hydrogen-filled discharge capillary waveguide are presented. Plasma temperatures of 4-7 eV are measured for peak discharge currents between 80 and 150 A. It is demonstrated that laser-triggering the capillary discharge enables capillary discharges with a peak current as low as 23 A to be driven, reducing the plasma temperature to approximately 3 eV. This plasma temperature meets the requirements of a recently proposed soft x-ray recombination laser. © 2011 IOP Publishing Ltd.
More details from the publisher
More details

Simulation of free-electron lasers seeded with broadband radiation

Physical Review Special Topics - Accelerators and Beams 14:6 (2011)

Authors:

SI Bajlekov, WM Fawley, CB Schroeder, R Bartolini, SM Hooker

Abstract:

The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds. © 2011 American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet