Simulating sub-wavelength temporal effects in a seeded FEL driven by laser-accelerated electrons
FEL 2009 - 31st International Free Electron Laser Conference (2009) 119-122
Abstract:
Ultrashort electron bunches from laser-driven plasma accelerators hold promise as drivers for short-wavelength free electron lasers. While FEL simulation techniques have been successful in simulating lasing at present-day facilities, the novel sources investigated here are likely to violate a number of widely-held assumptions. For instance the HHG seed radiation, as well as the radiation generated by the bunch, may not conform to the slowly-varying envelope approximation (SVEA) on which the majority of codes rely. Additionally, the longitudinal macroparticle binning precludes the modeling of the full physics of the system. In order to more completely simulate the sub-wavelength effects which arise, we have developed an unaveraged 1-D time-dependent code without the SVEA. We use this to perform numerical analyses and highlight some of the additional features that these new systems present. We conclude that while coherent spontaneous emission from ultra-short bunches may significantly affect start-up, the sub-wavelength structure of HHG seeds has little effect.Stable laser-driven electron beams from a steady-state-flow gas cell
AIP Conference Proceedings 1086 (2009) 125-130
Abstract:
Quasi-monoenergetic, laser-driven electron beams of up to ∼ 200 MeV in energy have been generated from steady-state-flow gas cells [1], These beams are emitted within a low-divergence cone of 2.1 ± 0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future. © 2009 American Institute of Physics.Chirped pulse trains for quasi-phase-matching high harmonic generation
Optics InfoBase Conference Papers (2009)
Abstract:
A method for producing non-uniformly spaced (chirped) trains of ultrafast pulses is demonstrated, using an acousto-optic programmable dispersive filter (AOPDF). Programmable pulse trains of this type may find applications in quasi-phase matching of high-harmonic generation. © 2009 Optical Society of America.Laser-driven soft-X-ray undulator source
Nature Physics 5:11 (2009) 826-829