Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms
Physical Review Letters American Physical Society 120:9 (2018) 093201
Abstract:
We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon conversion efficiency of \sim 0.3\% at low microwave intensities and a broad conversion bandwidth of more than 4~MHz. Theoretical simulations agree well with the experimental data, and indicate that near-unit efficiency is possible in future experiments.Topological Spin Models in Rydberg Lattices
Chapter in Exploring the World with the Laser, Springer Nature (2018) 351-369
The tensor network theory library
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT (2017) ARTN 093102
Terahertz field control of interlayer transport modes in cuprate superconductors
Physical Review B - Condensed Matter and Materials Physics American Physical Society 96:6 (2017) 064526
Abstract:
We theoretically show that terahertz pulses with controlled amplitude and frequency can be used to switch between stable transport modes in layered superconductors, modelled as stacks of Josephson junctions. We find pulse shapes that deterministically switch the transport mode between superconducting, resistive and solitonic states. We develop a simple model that explains the switching mechanism as a destablization of the centre of mass excitation of the Josephson phase, made possible by the highly non-linear nature of the light-matter coupling.Enhancement of superexchange pairing in the periodically driven Hubbard model
Physical Review B American Physical Society 96:8 (2017) 085104