Three-body bound states in dipole-dipole interacting Rydberg atoms
Physical Review Letters 111:23 (2013)
Abstract:
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds R≈2 μm, and each configuration is twofold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells, and describe methods for their production and detection. © 2013 American Physical Society.Frozen photons in Jaynes-Cummings arrays
Journal of Physics B: Atomic, Molecular and Optical Physics 46:22 (2013)
Abstract:
We study the origin of 'frozen' photonic states in coupled Jaynes-Cummings-Hubbard arrays. For the case of half the array initially populated with photons while the other half is left empty, we show the emergence of a self-localized photon or 'frozen' states for specific values of the local atom-photon coupling. We analyse the dynamics in the quantum regime and discover important additional features that do not appear to be captured by a semi-classical treatment, which we analyse for different array sizes and filling fractions. We trace the origin of this interaction-induced photon 'freezing' to the suppression of the excitation of propagating modes in the system at large interaction strengths. We discuss in detail the possibility of experimentally probing the relevant transition by analysing the emitted photon correlations both in the idealized lossless case and more realistic scenarios when reasonable losses are included. We find a strong signature of the effect in the emitted photons statistics. © 2013 IOP Publishing Ltd.Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms
Journal of Physics B: Atomic, Molecular and Optical Physics 46:13 (2013)
Abstract:
We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techniques. In the case of adiabatic motion in a single internal state, we show that the gauge fields give rise to a magnetic field that results in a Zeeman splitting of the rotational states. In particular, the ground state of a molecular potential well is given by the first excited rotational state. We find that our system realizes a synthetic spin-orbit coupling where the relative atomic motion couples to two internal two-atom states. The associated gauge fields are non-Abelian. © 2013 IOP Publishing Ltd.Heat transport in the XXZ spin chain: From ballistic to diffusive regimes and dephasing enhancement
Journal of Statistical Mechanics: Theory and Experiment 2013:7 (2013)
Abstract:
In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. © 2013 IOP Publishing Ltd and SISSA Medialab srl.Repulsively induced photon superbunching in driven resonator arrays
Physical Review A - Atomic, Molecular, and Optical Physics 87:5 (2013)