Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Three-body bound states in dipole-dipole interacting Rydberg atoms

Physical Review Letters 111:23 (2013)

Authors:

M Kiffner, W Li, D Jaksch

Abstract:

We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds R≈2 μm, and each configuration is twofold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells, and describe methods for their production and detection. © 2013 American Physical Society.
More details from the publisher
More details
More details

Frozen photons in Jaynes-Cummings arrays

Journal of Physics B: Atomic, Molecular and Optical Physics 46:22 (2013)

Authors:

N Schetakis, T Grujic, S Clark, D Jaksch, D Angelakis

Abstract:

We study the origin of 'frozen' photonic states in coupled Jaynes-Cummings-Hubbard arrays. For the case of half the array initially populated with photons while the other half is left empty, we show the emergence of a self-localized photon or 'frozen' states for specific values of the local atom-photon coupling. We analyse the dynamics in the quantum regime and discover important additional features that do not appear to be captured by a semi-classical treatment, which we analyse for different array sizes and filling fractions. We trace the origin of this interaction-induced photon 'freezing' to the suppression of the excitation of propagating modes in the system at large interaction strengths. We discuss in detail the possibility of experimentally probing the relevant transition by analysing the emitted photon correlations both in the idealized lossless case and more realistic scenarios when reasonable losses are included. We find a strong signature of the effect in the emitted photons statistics. © 2013 IOP Publishing Ltd.
More details from the publisher
More details

Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms

Journal of Physics B: Atomic, Molecular and Optical Physics 46:13 (2013)

Authors:

M Kiffner, W Li, D Jaksch

Abstract:

We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techniques. In the case of adiabatic motion in a single internal state, we show that the gauge fields give rise to a magnetic field that results in a Zeeman splitting of the rotational states. In particular, the ground state of a molecular potential well is given by the first excited rotational state. We find that our system realizes a synthetic spin-orbit coupling where the relative atomic motion couples to two internal two-atom states. The associated gauge fields are non-Abelian. © 2013 IOP Publishing Ltd.
More details from the publisher
More details

Heat transport in the XXZ spin chain: From ballistic to diffusive regimes and dephasing enhancement

Journal of Statistical Mechanics: Theory and Experiment 2013:7 (2013)

Authors:

JJ Mendoza-Arenas, S Al-Assam, SR Clark, D Jaksch

Abstract:

In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. © 2013 IOP Publishing Ltd and SISSA Medialab srl.
More details from the publisher
More details

Repulsively induced photon superbunching in driven resonator arrays

Physical Review A - Atomic, Molecular, and Optical Physics 87:5 (2013)

Authors:

T Grujic, SR Clark, D Jaksch, DG Angelakis

Abstract:

We analyze the nonequilibrium behavior of driven nonlinear photonic resonator arrays under the selective excitation of specific photonic many-body modes. Targeting the unit-filled ground state, we find a counterintuitive "superbunching" in the emitted photon statistics in spite of relatively strong on-site repulsive interaction. We consider resonator arrays with Kerr nonlinearities described by the Bose-Hubbard model, but also show that an analogous effect is observable in near-future experiments coupling resonators to two-level systems as described by the Jaynes-Cummings-Hubbard Hamiltonian. For the experimentally accessible case of a pair of coupled resonators forming a photonic molecule, we provide an analytical explanation for the nature of the effect. © 2013 American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet