Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Dynamically turning off interactions in a two-component condensate

Physical Review A - Atomic, Molecular, and Optical Physics 65:3 B (2002)

Authors:

D Jaksch, JI Cirac, P Zoller

Abstract:

A method to change the interaction strength of a two-component condensate by π/2 pulses is introduced. It is shown that applying a specific series of pulses to the condensate leads to an effective time-averaged Hamiltonian, which is of the form of the original two-component Hamiltonian with an interaction strength depending on parameters of the external field. In addition, it is shown that it is possible to store a spin-squeezed state of a condensate for an arbitrarily long time.
More details from the publisher
More details

Dipole blockade and quantum information processing in mesoscopic atomic ensembles.

Phys Rev Lett 87:3 (2001) 037901

Authors:

MD Lukin, M Fleischhauer, R Cote, LM Duan, D Jaksch, JI Cirac, P Zoller

Abstract:

We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as nonclassical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.
More details from the publisher
More details

Uniting Bose-Einstein condensates in optical resonators.

Phys Rev Lett 86:21 (2001) 4733-4736

Authors:

D Jaksch, SA Gardiner, K Schulze, JI Cirac, P Zoller

Abstract:

The relative phase of two initially independent Bose-Einstein condensates can be laser cooled to unite the two condensates by putting them into a ring cavity and coupling them with an internal Josephson junction. First, we show that this phase cooling process already appears within a semiclassical model. We calculate the stationary states, find regions of bistable behavior, and suggest a Ramsey-type experiment to measure the buildup of phase coherence between the condensates. We also study quantum effects and imperfections of the system.
More details from the publisher
More details

Quantum Computing with Trapped Particles in Microscopic Potentials

Chapter in Scalable Quantum Computers, Wiley (2000) 175-185

Authors:

T Calarco, D Jaksch, JI Cirac, P Zoller, H–J Briegel
More details from the publisher

Nonlinear matter wave dynamics with a chaotic potential

Physical Review A - Atomic, Molecular, and Optical Physics 62:2 (2000) 1-21

Authors:

SA Gardiner, D Jaksch, R Dum, JI Cirac, P Zoller

Abstract:

We consider the case of a cubic nonlinear Schrödinger equation with an additional chaotic potential, in the sense that such a potential produces chaotic dynamics in classical mechanics. We derive and describe an appropriate semiclassical limit to such a nonlinear Schrödinger equation, using a semiclassical interpretation of the Wigner function, and relate this to the hydrodynamic limit of the Gross-Pitaevskii equation used in the context of Bose-Einstein condensation. We investigate a specific example of a Gross-Pitaevskii equation with such a chaotic potential, the one-dimensional δ-kicked harmonic oscillator, and its semiclassical limit, discovering in the process an interesting interference effect, where increasing the strength of the repulsive nonlinearity promotes localization of the wave function. We explore the feasibility of an experimental realization of such a system in a Bose-Einstein condensate experiment, giving a concrete proposal of how to implement such a configuration, and considering the problem of condensate depletion. ©2000 The American Physical Society.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • Current page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet