Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:1 (2017) 217-238

Authors:

SV White, Matthew Jarvis, E Kalfountzou, MJ Hardcastle, A Verma, JM Cao Orjales, J Stevens

Abstract:

In order to understand the role of radio-quiet quasars (RQQs) in galaxy evolution, we must determine the relative levels of accretion and star-formation activity within these objects. Previous work at low radio flux densities has shown that accretion makes a significant contribution to the total radio emission, in contrast with other quasar studies that suggest star formation dominates. To investigate, we use 70 RQQs from the Spitzer-Herschel Active Galaxy Survey. These quasars are all at z ∼ 1, thereby minimizing evolutionary effects, and have been selected to span a factor of ∼100 in optical luminosity, so that the luminosity dependence of their properties can be studied. We have imaged the sample using the Karl G. Jansky Very Large Array (JVLA), whose high sensitivity results in 35 RQQs being detected above 2σ. This radio data set is combined with far-infrared luminosities derived from grey-body fitting to Herschel photometry. By exploiting the far-infrared-radio correlation observed for star-forming galaxies, and comparing two independent estimates of the star-formation rate, we show that star formation alone is not sufficient to explain the total radio emission. Considering RQQs above a 2σ detection level in both the radio and the far-infrared, 92 per cent are accretion dominated, and the accretion process accounts for 80 per cent of the radio luminosity when summed across the objects. The radio emission connected with accretion appears to be correlated with the optical luminosity of the RQQ, whilst a weaker luminosity dependence is evident for the radio emission connected with star formation.

More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

GMRT 610-MHz observations of the faint radio source population – and what these tell us about the higher radio-frequency sky

Monthly Notices of the Royal Astronomical Society Oxford University Press 464:3 (2017) 3357-3368

Authors:

IH Whittam, DA Green, Matthew Jarvis, JM Riley

Abstract:

We present 610-MHz Giant Metrewave Radio Telescope observations of 0.84 deg2 of the AMI001 field (centred on 00h23m10s, +31°53΄) with an rms noise of 18 μJy beam−1 in the centre of the field. A total of 955 sources are detected, and 814 are included in the source count analysis. The source counts from these observations are consistent with previous work. We have used these data to study the spectral index distribution of a sample of sources selected at 15.7 GHz from the recent deep extension to the Tenth Cambridge (10C) survey. The median spectral index, α, (where S ∝ ν−α) between 0.08
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release

Astronomy & Astrophysics EDP Sciences 598 (2017) A104

Authors:

TW Shimwell, HJA Röttgering, PN Best, Matthew J Jarvis, Et Et al.

Abstract:

The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120–168 MHz imaging survey that will eventually cover the entire northern sky. Each of the 3170 pointings will be observed for 8 h, which, at most declinations, is sufficient to produce ~5″ resolution images with a sensitivity of ~100 μJy/beam and accomplish the main scientific aims of the survey, which are to explore the formation and evolution of massive black holes, galaxies, clusters of galaxies and large-scale structure. Owing to the compact core and long baselines of LOFAR, the images provide excellent sensitivity to both highly extended and compact emission. For legacy value, the data are archived at high spectral and time resolution to facilitate subarcsecond imaging and spectral line studies. In this paper we provide an overview of the LoTSS. We outline the survey strategy, the observational status, the current calibration techniques, a preliminary data release, and the anticipated scientific impact. The preliminary images that we have released were created using a fully automated but direction-independent calibration strategy and are significantly more sensitive than those produced by any existing large-area low-frequency survey. In excess of 44 000 sources are detected in the images that have a resolution of 25″, typical noise levels of less than 0.5 mJy/beam, and cover an area of over 350 square degrees in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00′00″ to 57°00′00″).
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

The SCUBA-2 Cosmology Legacy Survey: 850um maps, catalogues and number counts

Monthly Notices of the Royal Astronomical Society Oxford University Press 465:2 (2016) 1789-1806

Authors:

JE Geach, JS Dunlop, M Halpern, I Smail, PVD Werf, DM Alexander, O Almaini, I Aretxaga, V Arumugam, V Asboth, M Banerji, J Beanlands, PN Best, AW Blain, M Birkinshaw, EL Chapin, SC Chapman, C-C Chen, A Chrysostomou, C Clarke, DL Clements, C Conselice, KEK Coppin, WI Cowley, ALR Danielson, S Eales, AC Edge, D Farrah, A Gibb, CM Harrison, NK Hine, D Hughes, RJ Ivison, Matthew Jarvis, T Jenness, SF Jones, A Karim, M Koprowski, KK Knudsen, CG Lacey, T Mackenzie, G Marsden, K McAlpine, R McMahon, R Meijerink, MJ Michalowski, SJ Oliver, MJ Page, JA Peacock, Dimitra Rigopoulou

Abstract:

We present a catalogue of ∼3,000 submillimetre sources detected (≥3.5σ) at 850μm over ∼5 deg2 surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850μm, increasing the sample size of 850-μm-selected submillimetre galaxies by an order of magnitude. The wide 850μm survey component of S2CLS covers the extragalactic fields: UKIDSS-UDS, COSMOS, Akari-NEP, Extended Groth Strip, Lockman Hole North, SSA22 and GOODS-North. The average 1σ depth of S2CLS is 1.2 mJy beam−1, approaching the SCUBA-2 850μm confusion limit, which we determine to be σc ≈ 0.8 mJy beam−1. We measure the 850μm number counts, reducing the Poisson errors on the differential counts to approximately 4% at S850 ≈ 3 mJy. With several independent fields, we investigate field-to-field variance, finding that the number counts on 0.5–1° scales are generally within 50% of the S2CLS mean for S850 > 3 mJy, with scatter consistent with the Poisson and estimated cosmic variance uncertainties, although there is a marginal (2σ) density enhancement in GOODS-North. The observed counts are in reasonable agreement with recent phenomenological and semi-analytic models, although determining the shape of the faint end slope (S850 < 3 mJy) remains a key test. The large solid angle of S2CLS allows us to measure the bright-end counts: at S850 > 10 mJy there are approximately ten sources per square degree, and we detect the distinctive up-turn in the number counts indicative of the detection of local sources of 850μm emission, and strongly lensed high-redshift galaxies. All calibrated maps and the catalogue are made publicly available.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Galaxy and mass assembly: the 1.4 GHz SFR indicator, SFR–M* relation and predictions for ASKAP–GAMA

Monthly Notices of the Royal Astronomical Society Oxford University Press 466:2 (2016) 2312-2324

Authors:

Luke JM Davies, Minh T Huynh, Andrew M Hopkins, Nick Seymour, Simon P Driver, Aaron GR Robotham, Ivan K Baldry, Joss Bland-Hawthorn, Nathan Bourne, Malcolm N Bremer, Michael JI Brown, Sarah Brough, Michelle Cluver, Meiert W Grootes, Matthew Jarvis, Jonathan Loveday, Amanda Moffet, Matt Owers, Steven Phillipps, Elaine Sadler, Lingyu Wang, Stephen Wilkins, Angus Wright

Abstract:

We present a robust calibration of the 1.4 GHz radio continuum star formation rate (SFR) using a combination of the Galaxy And Mass Assembly (GAMA) survey and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. We identify individually detected 1.4 GHz GAMA-FIRST sources and use a late-type, non-AGN, volume-limited sample from GAMA to produce stellar mass-selected samples. The latter are then combined to produce FIRST-stacked images. This extends the robust parametrisation of the 1.4 GHz-SFR relation to faint luminosities. For both the individually detected galaxies and our stacked samples, we compare 1.4 GHz luminosity to SFRs derived from GAMA to determine a new 1.4 GHz luminosity-to-SFR relation with well constrained slope and normalisation. For the first time, we produce the radio SFR-M⇤ relation over 2 decades in stellar mass, and find that our new calibration is robust, and produces a SFR-M⇤relation which is consistent with all other GAMA SFR methods. Finally, using our new 1.4 GHz luminosity-to-SFR calibration we make predictions for the number of star-forming GAMA sources which are likely to be detected in the upcoming ASKAP surveys, EMU and DINGO.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet