No evidence for Population III stars or a Direct Collapse Black Hole in the z = 6.6 Lyman-$α$ emitter 'CR7'
Abstract:
The z = 6.6 Lyman-$\alpha$ emitter 'CR7' has been claimed to have a Population III-like stellar population, or alternatively, be a candidate Direct Collapse Black Hole (DCBH). In this paper we investigate the evidence for these exotic scenarios using recently available, deeper, optical, near-infrared and mid-infrared imaging. We find strong Spitzer/IRAC detections for the main component of CR7 at 3.6 and 4.5 microns, and show that it has a blue colour ([3.6] - [4.5] $= -1.2\pm 0.3$). This colour cannot be reproduced by current Pop. III or pristine DCBH models. Instead, the results suggest that the [3.6] band is contaminated by the [OIII]4959,5007 emission line with an implied rest-frame equivalent width of EW_0 (H$\beta$ + [OIII]) $\gtrsim 2000$\AA. Furthermore, we find that new near-infrared data from the UltraVISTA survey supports a weaker He II 1640 emission line than previously measured, with EW_0 $= 40 \pm 30$\AA. For the fainter components of CR7 visible in Hubble Space Telescope imaging, we find no evidence that they are particularly red as previously claimed, and show that the derived masses and ages are considerably uncertain. In light of the likely detection of strong [OIII] emission in CR7 we discuss other more standard interpretations of the system that are consistent with the data. We find that a low-mass, narrow-line AGN can reproduce the observed features of CR7, including the lack of radio and X-ray detections. Alternatively, a young, low-metallicity (~1/200 solar) starburst, modelled including binary stellar pathways, can reproduce the inferred strength of the He II line and simultaneously the strength of the observed [OIII] emission, but only if the gas shows super-solar $\alpha$-element abundances (O/Fe ~ 5 O/Fe solar).The XXL survey: first results and future
Abstract:
The XXL survey currently covers two 25 deg2 patches with XMM observations of ~ 10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-λ observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
The KMOS Redshift One Spectroscopic Survey (KROSS): rotational velocities and angular momentum of z ≈ 0.9 galaxies★
Abstract:
We present dynamical measurements for 586 Hα-detected star-forming galaxies from the KMOS (K-band Multi-Object Spectrograph) Redshift One Spectroscopic Survey (KROSS). The sample represents typical star-forming galaxies at this redshift (z = 0.6-1.0), with a median star formation rate of ≈7 M ⊙ yr -1 and a stellar mass range of log (M * [M ⊙ ]) ≈ 9-11. We find that the rotation velocity-stellar mass relationship (the inverse of the Tully- Fisher relationship) for our rotationally dominated sources (v C /σ 0 > 1) has a consistent slope and normalization as that observed for z = 0 discs. In contrast, the specific angular momentum (j * angular momentum divided by stellar mass) is ≈0.2-0.3 dex lower on average compared to z = 0 discs. The specific angular momentum scales as j s ∝ M * 0.6±0.2 , consistent with that expected for dark matter (i.e. j DM ∝ M DM 2/3 ). We find that z≈ 0.9 star-forming galaxies have decreasing specific angular momentum with increasing Sérsic index. Visually, the sources with the highest specific angular momentum, for a given mass, have the most disc-dominated morphologies. This implies that an angular momentum-mass-morphology relationship, similar to that observed in local massive galaxies, is already in place by z ≈ 1.Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars
Abstract:
In order to understand the role of radio-quiet quasars (RQQs) in galaxy evolution, we must determine the relative levels of accretion and star-formation activity within these objects. Previous work at low radio flux densities has shown that accretion makes a significant contribution to the total radio emission, in contrast with other quasar studies that suggest star formation dominates. To investigate, we use 70 RQQs from the Spitzer-Herschel Active Galaxy Survey. These quasars are all at z ∼ 1, thereby minimizing evolutionary effects, and have been selected to span a factor of ∼100 in optical luminosity, so that the luminosity dependence of their properties can be studied. We have imaged the sample using the Karl G. Jansky Very Large Array (JVLA), whose high sensitivity results in 35 RQQs being detected above 2σ. This radio data set is combined with far-infrared luminosities derived from grey-body fitting to Herschel photometry. By exploiting the far-infrared-radio correlation observed for star-forming galaxies, and comparing two independent estimates of the star-formation rate, we show that star formation alone is not sufficient to explain the total radio emission. Considering RQQs above a 2σ detection level in both the radio and the far-infrared, 92 per cent are accretion dominated, and the accretion process accounts for 80 per cent of the radio luminosity when summed across the objects. The radio emission connected with accretion appears to be correlated with the optical luminosity of the RQQ, whilst a weaker luminosity dependence is evident for the radio emission connected with star formation.