Herschel-ATLAS★: far-infrared properties of radio-loud and radio-quiet quasars
Optimising SKA1-Mid Scale-Dependent Sensitivity
A close-pair binary in a distant triple supermassive black hole system.
Abstract:
Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.Cosmology with the SKA -- overview
Abstract:
The new frontier of cosmology will be led by three-dimensional surveys of the large-scale structure of the Universe. Based on its all-sky surveys and redshift depth, the SKA is destined to revolutionize cosmology, in combination with future optical/ infrared surveys such as Euclid and LSST. Furthermore, we will not have to wait for the full deployment of the SKA in order to see transformational science. In the first phase of deployment (SKA1), all-sky HI intensity mapping surveys and all-sky continuum surveys are forecast to be at the forefront on the major questions of cosmology. We give a broad overview of the major contributions predicted for the SKA. The SKA will not only deliver precision cosmology -- it will also probe the foundations of the standard model and open the door to new discoveries on large-scale features of the Universe.