Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Beyond stacking: A maximum-likelihood method to constrain radio source counts below the detection threshold

Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2270-2278

Authors:

K Mitchell-Wynne, MG Santos, J Afonso, MJ Jarvis

Abstract:

We present a statistical method based on a maximum-likelihood approach to constrain the number counts of extragalactic sources below the nominal flux-density limit of continuum imaging surveys. We extract flux densities from a radio map using positional information from an auxiliary catalogue and show that we can model the number counts of this undetected population down to flux-density levels well below the detection threshold of the radio survey. We demonstrate the capabilities that our method will have with future generation wide-area radio surveys by performing simulations over various sky areas. We show that it is possible to accurately constrain the number counts of the simulated distribution down to one-tenth of the flux noise rms with just a sky area of 100 deg2.We then test the application of our method using data from the Faint Images of the Radio Sky at Twenty-Centimetres survey (FIRST). We extract flux densities from the FIRST map, sensitive to 150 μJy beam-1 (1 σ), using the positional information from a catalogue in the same field, also acquired at the same frequency, sensitive to 12 μJy beam-1 (1 σ). Implementing our method, with known source positions, we are able to recover the right differential number counts of the noise-dominated FIRST map fluxes down to a flux-density level which is one-tenth the FIRST detection threshold. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Cosmology with a SKA HI intensity mapping survey

Proceedings of Science 9-13-June-2014 (2014)

Authors:

MG Santos, P Bull, D Alonso, S Camera, PG Ferreira, G Bernardi, R Maartens, M Viel, F Villaescusa-Navarro, FB Abdalla, JM Jarvis, RB Metcalf, A Pourtsidou, L Wolz

Abstract:

HI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum - Thus determining the expansion and growth history of the Universe - These surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.
Details from ArXiV

Exploring AGN Activity over cosmic time with the SKA

Proceedings of Science 9-13-June-2014 (2014)

Authors:

V Smolcic, P Padovani, J Delhaize, I Prandoni, N Seymour, M Jarvis, J Afonso, M Magliocchett, IM Huynh, M Vaccari, A Karim

Abstract:

In this Chapter we present the motivation for undertaking both a wide and deep survey with the SKA in the context of studying AGN activity across cosmic time. With an rms down to 1 μJy/beam at 1 GHz over 1,000 - 5,000 deg2 in 1 year (wide tier band 1/2) and an rms down to 200 nJy/beam over 10 - 30 deg2 in 2000 hours (deep tier band 1/2), these surveys will directly detect faint radio-loud and radio-quiet AGN (down to a 1 GHz radio luminosity of about 2×1023 W/Hz at z = 6). For the first time, this will enable us to conduct detailed studies of the cosmic evolution of radio AGN activity to the cosmic dawn (z ≳ 6), covering all environmental densities.
Details from ArXiV

Morphological classification of radio sources for galaxy evolution and cosmology with the SKA

Proceedings of Science 9-13-June-2014 (2014)

Authors:

S Makhathini, OM Smirnov, MJ Jarvis, I Heywood

Abstract:

Morphologically classifying radio sources in continuum images with the SKA has the potential to address some of the key questions in cosmology and galaxy evolution. In particular, we may use different classes of radio sources as independent tracers of the dark-matter density field, and thus overcome cosmic variance in measuring large-scale structure, while on the galaxy evolution side we could measure the mechanical feedback from FRII and FRI jets. This work makes use of a MeqTrees-based simulations framework to forecast the ability of the SKA to recover true source morphologies at high redshifts. A suite of high resolution images containing realistic continuum source distributions with different morphologies (FRI, FRII, starburst galaxies) is fed through an SKA Phase 1 simulator, then analysed to determine the sensitivity limits at which the morphologies can still be distinguished. We also explore how changing the antenna distribution affects these results.
Details from ArXiV

Overview of complementarity and synergy with other wavelengths in cosmology in the SKA era

Proceedings of Science 9-13-June-2014 (2014)

Authors:

K Takahashi, ML Brown, C Burigana, CA Jackson, M Jarvis, TD Kitching, JP Kneib, M Oguri, S Prunet, H Shan, JL Starck, D Yamauchi

Abstract:

We give an overview of complementarity and synergy in cosmology between the Square Kilometre Array and future survey projects in other wavelengths. In the SKA era, precision cosmology will be limited by systematic errors and cosmic variance, rather than statistical errors. However, combining and/or cross-correlating multi-wavelength data, from the SKA to the cosmic microwave background, optical/infrared and X-ray, substantially reduce these limiting factors. In this chapter, we summarize future survey projects and show highlights of complementarity and synergy, which can be very powerful to probe major cosmological problems such as dark energy, modified gravity and primordial non-Gaussianity.
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Current page 53
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet