Measurements of CO redshifts with Z-spec for lensed submillimeter galaxies discovered in the H-atlas survey
Astrophysical Journal 757:2 (2012)
Abstract:
We present new observations from Z-Spec, a broadband 185-305GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 102-3 M ⊙ yr-1. Lower limits for the dust masses (∼a few 108 M ⊙) and spatial extents (1kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures (≲ 100 K) and optical depths (τ ≲ 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models. © 2012. The American Astronomical Society. All rights reserved.A detailed gravitational lens model based on Submillimeter Array and Keck adaptive optics imaging of a Herschel-atlas submillimeter galaxy at z = 4.243
Astrophysical Journal 756:2 (2012)
Abstract:
We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 μm and the Keck adaptive optics (AO) system at the K S-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution 06) resolve the dust emission into multiple lensed images, while the Keck AO K S-band data (angular resolution 01) resolve the lens into a pair of galaxies separated by 03. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z lens = 0.595 ± 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of μ = 4.1 ± 0.2 and has an intrinsic infrared (IR) luminosity of L IR = (2.1 ± 0.2) × 1013 L ⊙. We measure a half-light radius of the background source of r s = 4.4 ± 0.5kpc which implies an IR luminosity surface density of ΣIR = (3.4 ± 0.9) × 1011 L ⊙kpc-2, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z 0. The two lens galaxies are compact (r lens 0.9kpc) early-types with Einstein radii of θE1 = 0.57 ± 0.01 and θE2 = 0.40 ± 0.01 that imply masses of M lens1 = (7.4 ± 0.5) × 1010 M ⊙ and M lens2 = (3.7 ± 0.3) × 10 10 M ⊙. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies discovered by Herschel. © 2012. The American Astronomical Society. All rights reserved.Gas-rich mergers and feedback are ubiquitous amongst starbursting radio galaxies, as revealed by the VLA, IRAM PdBI and Herschel
\mnras 425 (2012) 1320-1331-1320-1331
Herschel-ATLAS/GAMA: spatial clustering of low-redshift sub-mm galaxies
ArXiv e-prints (2012)
Herschel-ATLAS: the far-infrared properties and star-formation rates of broad absorption line quasi-stellar objects
ArXiv e-prints (2012)