Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The Oxford 750MHz NMR Spectrometer

The Oxford 750MHz NMR Spectrometer

Prof Jonathan Jones

Professor of Physics

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • NMR quantum computing
jonathan.jones@physics.ox.ac.uk
  • About
  • Publications

Quantum logic gates and nuclear magnetic resonance pulse sequences.

J Magn Reson 135:2 (1998) 353-360

Authors:

JA Jones, RH Hansen, M Mosca

Abstract:

There has recently been considerable interest in the use of nuclear magnetic resonance (NMR) as a technology for the implementation of small quantum computers. These computers operate by the laws of quantum mechanics, rather than classical mechanics and can be used to implement new quantum algorithms. Here we describe how NMR in principle can be used to implement all the elements required to build quantum computers, and draw comparisons between the pulse sequences involved and those of more conventional NMR experiments.
More details from the publisher
More details
Details from ArXiV

Quantum computing [4] (multiple letters)

Science 281:5385 (1998) 1963-1964

Authors:

AF Fahmy, JA Jones

Implementation of a Quantum Search Algorithm on a Nuclear Magnetic Resonance Quantum Computer

(1998)

Authors:

JA Jones, M Mosca, RH Hansen
More details from the publisher

Quantum Logic Gates and Nuclear Magnetic Resonance Pulse Sequences

(1998)

Authors:

JA Jones, RH Hansen, M Mosca
More details from the publisher

Amyloid fibril formation by an SH3 domain.

Proc Natl Acad Sci U S A 95:8 (1998) 4224-4228

Authors:

JI Guijarro, M Sunde, JA Jones, ID Campbell, CM Dobson

Abstract:

The SH3 domain is a well characterized small protein module with a simple fold found in many proteins. At acid pH, the SH3 domain (PI3-SH3) of the p85alpha subunit of bovine phosphatidylinositol 3-kinase slowly forms a gel that consists of typical amyloid fibrils as assessed by electron microscopy, a Congo red binding assay, and x-ray fiber diffraction. The soluble form of PI3-SH3 at acid pH (the A state by a variety of techniques) from which fibrils are generated has been characterized. Circular dichroism in the far- and near-UV regions and 1H NMR indicate that the A state is substantially unfolded relative to the native protein at neutral pH. NMR diffusion measurements indicate, however, that the effective hydrodynamic radius of the A state is only 23% higher than that of the native protein and is 20% lower than that of the protein denatured in 3.5 M guanidinium chloride. In addition, the A state binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid, which suggests that SH3 in this state has a partially formed hydrophobic core. These results indicate that the A state is partially folded and support the hypothesis that partially folded states formed in solution are precursors of amyloid deposition. Moreover, that this domain aggregates into amyloid fibrils suggests that the potential for amyloid deposition may be a common property of proteins, and not only of a few proteins associated with disease.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet