Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Credit: Rendering by Dimitars Jevtics

Prof Michael Johnston

Professor of Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
  • Advanced Device Concepts for Next-Generation Photovoltaics
michael.johnston@physics.ox.ac.uk
Johnston Group Website
  • About
  • Publications

Photon Re-Absorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite

Nano Letters American Chemical Society 17:9 (2017) 5782-5789

Authors:

Timothy W Crothers, Rebecca L Milot, Jay B Patel, Elizabeth S Parrott, J Schlipf, P Muller-Buschbaum, Michael B Johnston, Laura Herz

Abstract:

An understanding of charge-carrier recombination processes is essential for the development of hybrid metal halide perovskites for photovoltaic applications. We show that typical measurements of the radiative bimolecular recombination constant in CH3NH3PbI3 are strongly affected by photon re-absorption which masks a much larger intrinsic bimolecular recombination rate constant. By investigating a set of films whose thickness varies between 50nm and 533nm, we find that the bimolecular charge recombination rate appears to slow by an order of magnitude as the film thickness increases. However, by using a dynamical model that accounts for photon re-absorption and charge-carrier diffusion we determine that a single intrinsic bimolecular recombination coefficient, of value 6.8x10(-10)cm(3)s(-1), is common to all samples irrespective of film thickness. Hence we postulate that the wide range of literature values reported for such coefficients is partly to blame on differences in photon out-coupling between samples, with crystal grains or mesoporous scaffolds of different sizes influencing light scattering, while thinner films or index-matched surrounding layers can reduce the possibility for photon re-absorption. We discuss the critical role of photon confinement on free charge-carrier retention in thin photovoltaic layers and highlight an approach to assess the success of such schemes from transient spectroscopic measurement.
More details from the publisher
Details from ORA
More details
More details

Near-infrared and short-wavelength infrared photodiodes based on dye-perovskite composites

Advanced Functional Materials Wiley 27:38 (2017) 1702485

Authors:

Q Lin, Z Wang, M Young, JB Patel, RL Milot, L Martinez Maestro, RR Lunt, HJ Snaith, MB Johnston, Laura Herz

Abstract:

Organohalide perovskites have emerged as promising light-sensing materials because of their superior optoelectronic properties and low-cost processing methods. Recently, perovskite-based photodetectors have successfully been demonstrated as both broadband and narrowband varieties. However, the photodetection bandwidth in perovskite-based photodetectors has so far been limited to the near-infrared regime owing to the relatively wide band gap of hybrid organohalide perovskites. In particular, short-wavelength infrared photodiodes operating beyond 1 μm have not yet been realized with organohalide perovskites. In this study, narrow band gap organic dyes are combined with hybrid perovskites to form composite films as active photoresponsive layers. Tuning the dye loading allows for optimization of the spectral response characteristics and excellent charge-carrier mobilities near 11 cm 2 V -1 s -1 , suggesting that these composites combine the light-absorbing properties or IR dyes with the outstanding charge-extraction characteristics of the perovskite. This study demonstrates the first perovskite photodiodes with deep near-infrared and short-wavelength infrared response that extends as far as 1.6 μm. All devices are solution-processed and exhibit relatively high responsivity, low dark current, and fast response at room temperature, making this approach highly attractive for next-generation light-detection techniques.
More details from the publisher
Details from ORA
More details
More details

Charge-Carrier Dynamics in Hybrid Metal Halide Perovskites for Photovoltaics and Light Emission

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-1

Authors:

Rebecca L Milot, Michael B Johnston, Laura M Herz
More details
More details from the publisher

Investigations of Doping Via Optical Pump Terahertz-Probe Spectroscopy

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-1

Authors:

Jessica L Boland, A Casadei, G Tütüncouglu, F Matteini, C Davies, F Gaveen, F Amaduzzi, HJ Joyce, LM Herz, A Fontcuberta I Morral, Michael B Johnston
More details from the publisher
More details

Band-tail recombination in hybrid lead iodide perovskite

Advanced Functional Materials Wiley (2017)

Authors:

AD Wright, Rebecca L Milot, GE Eperon, Henry J Snaith, Laura Johnston, Michael B Herz

Abstract:

Traps limit the photovoltaic efficiency and affect the charge transport of optoelectronic devices based on hybrid lead halide perovskites. Understanding the nature and energy scale of these trap states is therefore crucial for the development and optimization of solar cell and laser technology based on these materials. Here, the low-temperature photoluminescence of formamidinium lead triiodide (HC(NH2)2PbI3) is investigated. A power-law time dependence in the emission intensity and an additional low-energy emission peak that exhibits an anomalous relative Stokes shift are observed. Using a rate-equation model and a Monte Carlo simulation, it is revealed that both phenomena arise from an exponential trap-density tail with characteristic energy scale of ≈3 meV. Charge-carrier recombination from sites deep within the tail is found to cause emission with energy downshifted by up to several tens of meV. Hence, such phenomena may in part be responsible for open-circuit voltage losses commonly observed in these materials. In this high-quality hybrid perovskite, trap states thus predominantly comprise a continuum of energetic levels (associated with disorder) rather than discrete trap energy levels (associated, e.g., with elemental vacancies). Hybrid perovskites may therefore be viewed as classic semiconductors whose bandstructure picture is moderated by a modest degree of energetic disorder.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet