Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Junke Wang

Marie Curie Postdoc Fellow

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
junke.wang@physics.ox.ac.uk
Robert Hooke Building
  • About
  • Publications

Small molecule dopant-free dual hole transporting material for conventional and inverted perovskite solar cells

Materials Chemistry Frontiers Royal Society of Chemistry (RSC) 7:18 (2023) 4019-4028

Authors:

Miriam Más-Montoya, Paula Gómez, Junke Wang, René AJ Janssen, David Curiel
More details from the publisher

Publisher Correction: Regulating surface potential maximizes voltage in all-perovskite tandems.

Nature 620:7973 (2023) E15

Authors:

Hao Chen, Aidan Maxwell, Chongwen Li, Sam Teale, Bin Chen, Tong Zhu, Esma Ugur, George Harrison, Luke Grater, Junke Wang, Zaiwei Wang, Lewei Zeng, So Min Park, Lei Chen, Peter Serles, Rasha Abbas Awni, Biwas Subedi, Xiaopeng Zheng, Chuanxiao Xiao, Nikolas J Podraza, Tobin Filleter, Cheng Liu, Yi Yang, Joseph M Luther, Stefaan De Wolf, Mercouri G Kanatzidis, Yanfa Yan, Edward H Sargent
More details from the publisher
More details
More details

Suppressed phase segregation for triple-junction perovskite solar cells.

Nature 618:7963 (2023) 74-79

Authors:

Zaiwei Wang, Lewei Zeng, Tong Zhu, Hao Chen, Bin Chen, Dominik J Kubicki, Adam Balvanz, Chongwen Li, Aidan Maxwell, Esma Ugur, Roberto Dos Reis, Matthew Cheng, Guang Yang, Biwas Subedi, Deying Luo, Juntao Hu, Junke Wang, Sam Teale, Suhas Mahesh, Sasa Wang, Shuangyan Hu, Eui Dae Jung, Mingyang Wei, So Min Park, Luke Grater, Erkan Aydin, Zhaoning Song, Nikolas J Podraza, Zheng-Hong Lu, Jinsong Huang, Vinayak P Dravid, Stefaan De Wolf, Yanfa Yan, Michael Grätzel, Merx G Kanatzidis, Edward H Sargent

Abstract:

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.
More details from the publisher
More details
More details

Optical Simulation-Aided Design and Engineering of Monolithic Perovskite/Silicon Tandem Solar Cells.

ACS applied energy materials 6:10 (2023) 5217-5229

Authors:

Yifeng Zhao, Kunal Datta, Nga Phung, Andrea EA Bracesco, Valerio Zardetto, Giulia Paggiaro, Hanchen Liu, Mohua Fardousi, Rudi Santbergen, Paul Procel Moya, Can Han, Guangtao Yang, Junke Wang, Dong Zhang, Bas T van Gorkom, Tom PA van der Pol, Michael Verhage, Martijn M Wienk, Wilhelmus MM Kessels, Arthur Weeber, Miro Zeman, Luana Mazzarella, Mariadriana Creatore, René AJ Janssen, Olindo Isabella

Abstract:

Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highlights light management techniques assisted by optical simulation. We first engineered (i)a-Si:H passivating layers for (100)-oriented flat c-Si surfaces and combined them with various (n)a-Si:H, (n)nc-Si:H, and (n)nc-SiOx:H interfacial layers for SHJ bottom-cells. In a symmetrical configuration, a long minority carrier lifetime of 16.9 ms was achieved when combining (i)a-Si:H bilayers with (n)nc-Si:H (extracted at the minority carrier density of 1015 cm-3). The perovskite sub-cell uses a photostable mixed-halide composition and surface passivation strategies to minimize energetic losses at charge-transport interfaces. This allows tandem efficiencies above 23% (a maximum of 24.6%) to be achieved using all three types of (n)-layers. Observations from experimentally prepared devices and optical simulations indicate that both (n)nc-SiOx:H and (n)nc-Si:H are promising for use in high-efficiency tandem solar cells. This is possible due to minimized reflection at the interfaces between the perovskite and SHJ sub-cells by optimized interference effects, demonstrating the applicability of such light management techniques to various tandem structures.
More details from the publisher
More details
More details

3D Perovskite Passivation with a Benzotriazole-Based 2D Interlayer for High-Efficiency Solar Cells.

ACS applied energy materials 6:7 (2023) 3933-3943

Authors:

Alessandro Caiazzo, Arthur Maufort, Bas T van Gorkom, Willemijn HM Remmerswaal, Jordi Ferrer Orri, Junyu Li, Junke Wang, Wouter TM van Gompel, Kristof Van Hecke, Gunnar Kusch, RA Oliver, Caterina Ducati, Laurence Lutsen, Martijn M Wienk, Samuel D Stranks, Dirk Vanderzande, René AJ Janssen

Abstract:

2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI3) solar cells. In combination with PbI2 and PbBr2, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI3 solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage. Quasi-Fermi level splitting experiments and scanning electron microscopy cathodoluminescence hyperspectral imaging reveal that passivation provides a reduced nonradiative recombination at the interface between the perovskite and hole transport layer. Photoluminescence spectroscopy, angle-resolved grazing-incidence wide-angle X-ray scattering, and depth profiling X-ray photoelectron spectroscopy studies of the 2D/three-dimensional (3D) interface between the benzotriazole RPP and FAPbI3 show that a nonuniform layer of 2D perovskites is enough to passivate defects, enhance charge extraction, and decrease nonradiative recombination.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet