Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Junke Wang

Marie Curie Postdoc Fellow

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
junke.wang@physics.ox.ac.uk
Robert Hooke Building
  • About
  • Publications

The Importance of Conserving the Stoichiometry of Wide-Bandgap Perovskites in Additive Engineering

ACS Applied Energy Materials American Chemical Society 8:19 (2025) 14486-14497

Authors:

Nick RM Schipper, Guus JW Aalbers, Laura Bellini, Simon V Quiroz Monnens, Lana M Kessels, Junke Wang, Martijn M Wienk, René AJ Janssen

Abstract:

Additive engineering is among the most commonly used strategies to enhance the performance and stability of perovskite solar cells. Prior research often focused on optimizing device performance by using additives in the perovskite precursor solution to influence the rate of crystallization and film formation, but a fundamental understanding of the effect of additives on the stoichiometry of the absorber remains elusive. In this study, we reveal how additives affect the ABX3 stoichiometry of the perovskite absorber and its photovoltaic properties. We find that the solar cell performance of a wide-bandgap (1.77 eV) Cs0.2FA0.8Pb-(I0.6Br0.4)3 perovskite decreases when processed with either of two common additives, lead thiocyanate and lead chloride, because the additive disturbs the stoichiometry. Interestingly, the addition of excess formamidinium iodide (FAI) to the precursor solution can restore the initial ABX3 stoichiometry and fully recover the device performance. The excess of FAI that is required depends on whether the halide or pseudohalide additive is incorporated into the crystal lattice. Finally, we alter the stoichiometry of an additive-free perovskite absorber by inducing either an excess or a deficiency of FAI or lead iodide in the precursor and show that slight deviations from the ideal stoichiometry rapidly degrade the device performance. This work provides fundamental insights into the importance of bulk stoichiometry in perovskite absorbers and can serve as a basis for future rational additive engineering.
More details from the publisher
Details from ORA
More details

Exposing binding-favourable facets of perovskites for tandem solar cells

Energy & Environmental Science Royal Society of Chemistry 18 (2025) 7680-7694

Authors:

Junke Wang, Shuaifeng Hu, Zehua Chen, Zhongcheng Yuan, Pei Zhao, Akash Dasgupta, Fengning Yang, Jin Yao, Minh Anh Truong, Gunnar Kusch, Esther Hung, Nick Schipper, Laura Bellini, Guus Aalbers, Zonghao Liu, Rachel Oliver, Atsushi Wakamiya, René Janssen, Henry Snaith

Abstract:

Improved understanding of heterojunction interfaces has enabled multijunction photovoltaic devices to achieve power conversion efficiencies that exceed the detailed-balance limit for single-junctions. For wide-bandgap perovskites, however, the pronounced energy loss across the heterojunctions of the active and charge transport layers impedes multijunction devices from reaching their full efficiency potential. Here we find that for polycrystalline perovskite films with mixed-halide compositions, the crystal termination—a factor influencing the reactivity and density of surface sites—plays a crucial role in interfacial passivation for wide-bandgap perovskites. We demonstrate that by templating the growth of polycrystalline perovskite films toward a preferred (100) facet, we can reduce the density of deep-level trap states and enhance the binding of modification ligands. This leads to a much-improved heterojunction interface, resulting in open-circuit voltages of 1.38 V for 1.77-eV single-junction perovskite solar cells. In addition, monolithic all-perovskite double-junction solar cells achieve open-circuit voltage values of up to 2.22 V, with maximum power point tracking efficiencies reaching 28.6% and 27.7% at 0.25 and 1.0 cm2 cell areas, respectively, along with improved operational and thermal stability at 85 °C. This work provides universally applicable insights into the crystalline facet-favourable surface modification of perovskite films, advancing their performance in optoelectronic applications.
More details from the publisher
Details from ORA
More details

Exposing binding-favourable facets of perovskites for tandem solar cells

Royal Society of Chemistry (2025)

Abstract:

July 4, 2025
Details from ORA
More details from the publisher

Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics

Nature Communications Springer Science and Business Media LLC 16:1 (2025) 4917

Authors:

Jianan Wang, Shuaifeng Hu, He Zhu, Sanwan Liu, Zhongyong Zhang, Rui Chen, Junke Wang, Chenyang Shi, Jiaqi Zhang, Wentao Liu, Xia Lei, Bin Liu, Yongyan Pan, Fumeng Ren, Hasan Raza, Qisen Zhou, Sibo Li, Longbin Qiu, Guanhaojie Zheng, Xiaojun Qin, Zhiguo Zhao, Shuang Yang, Neng Li, Jingbai Li, Atsushi Wakamiya, Zonghao Liu, Henry J Snaith, Wei Chen
More details from the publisher
More details
More details

Resilience pathways for halide perovskite photovoltaics under temperature cycling

Nature Reviews Materials Springer Nature 10:7 (2025) 536-549

Authors:

Luyan Wu, Shuaifeng Hu, Feng Yang, Guixiang Li, Junke Wang, Weiwei Zuo, José J Jerónimo-Rendon, Silver-Hamill Turren-Cruz, Michele Saba, Michael Saliba, Mohammad Khaja Nazeeruddin, Jorge Pascual, Meng Li, Antonio Abate

Abstract:

Metal-halide perovskite solar cells have achieved power conversion efficiencies comparable to those of silicon photovoltaic (PV) devices, approaching 27% for single-junction devices. The durability of the devices, however, lags far behind their performance. Their practical implementation implies the subjection of the material and devices to temperature cycles of varying intensity, driven by diurnal cycles or geographical characteristics. Thus, it is vital to develop devices that are resilient to temperature cycling. This Perspective analyses the behaviour of perovskite devices under temperature cycling. We discuss the crystallographic structural evolution of the perovskite layer, reactions and/or interactions among stacked layers, PV properties and photocatalysed thermal reactions. We highlight effective strategies for improving stability under temperature cycling, such as enhancing material crystallinity or relieving interlayer thermal stress using buffer layers. Additionally, we outline existing standards and protocols for temperature cycling testing and we propose a unified approach that could facilitate valuable cross-study comparisons among scientific and industrial research laboratories. Finally, we share our outlook on strategies to develop perovskite PV devices with exceptional real-world operating stability.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet