Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Pascal Kaienburg

Postdoctoral Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
pascal.kaienburg@physics.ox.ac.uk
Telephone: 01865282330
Robert Hooke Building, room G29
  • About
  • Publications

Roadmap on established and emerging photovoltaics for sustainable energy conversion

Journal of Physics Energy IOP Publishing (2024)

Authors:

James C Blakesley, Ruy Sebastian Bonilla, Marina Freitag, Alex Ganose, Nicola Gasparini, Pascal Kaienburg, George Koutsourakis, Jonathan D Major, Jenny Nelson, Nakita K Noel, Bart Roose, Jae Sung Yun, Simon Aliwell, Pietro Altermatt, Tayebeh Ameri, Virgil Andrei, Ardalan Armin, Diego Bagnis, Jenny Baker, Hamish Beath, Mathieu Bellanger, Philippe Berrouard, Jochen Blumberger, Stuart Boden, Hugo Bronstein, Matthew J Carnie, Chris Case, Fernando A Castro, Yi-Ming Chang, Elmer Chao, Tracey M Clarke, Graeme Cooke, Pablo Docampo, Ken Durose, James Durrant, Marina Filip, Richard H Friend, Jarvist M Frost, Elizabeth Gibson, Alexander J Gillett, Pooja Goddard, Severin Habisreutinger, Martin Heeney, Arthur D Hendsbee, Louise Caroline Hirst, Saiful Islam, Imalka Jayawardena, Michael Johnston, Matthias Kauer, Jeff Kettle

Abstract:

<jats:title>Abstract</jats:title> <jats:p>Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO<jats:sub>2</jats:sub>eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TW<jats:sub>p</jats:sub> in 2021 to 8.5 TW<jats:sub>p</jats:sub> by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.</jats:p>
More details from the publisher
More details

Limiting factors for charge generation in low-offset fullerene-based organic solar cells

Nature Communications Nature Research 15:1 (2024) 5488

Authors:

Anna Jungbluth, Eunkyung Cho, Alberto Privitera, Kaila M Yallum, Pascal Kaienburg, Andreas E Lauritzen, Thomas Derrien, Sameer V Kesava, Irfan Habib, Saied Md Pratik, Natalie Banerji, Jean-Luc Brédas, Veaceslav Coropceanu, Moritz Riede

Abstract:

Free charge generation after photoexcitation of donor or acceptor molecules in organic solar cells generally proceeds via (1) formation of charge transfer states and (2) their dissociation into charge separated states. Research often either focuses on the first component or the combined effect of both processes. Here, we provide evidence that charge transfer state dissociation rather than formation presents a major bottleneck for free charge generation in fullerene-based blends with low energetic offsets between singlet and charge transfer states. We investigate devices based on dilute donor content blends of (fluorinated) ZnPc:C60 and perform density functional theory calculations, device characterization, transient absorption spectroscopy and time-resolved electron paramagnetic resonance measurements. We draw a comprehensive picture of how energies and transitions between singlet, charge transfer, and charge separated states change upon ZnPc fluorination. We find that a significant reduction in photocurrent can be attributed to increasingly inefficient charge transfer state dissociation. With this, our work highlights potential reasons why low offset fullerene systems do not show the high performance of non-fullerene acceptors.
More details from the publisher
Details from ORA
More details
More details

Multifunctional ytterbium oxide buffer for perovskite solar cells

Nature Springer Nature 625:7995 (2024) 516-522

Authors:

Peng Chen, Yun Xiao, Juntao Hu, Shunde Li, Deying Luo, Rui Su, Pietro Caprioglio, Pascal Kaienburg, Xiaohan Jia, Nan Chen, Jingjing Wu, Yanping Sui, Pengyi Tang, Haoming Yan, Tianyu Huang, Maotao Yu, Qiuyang Li, Lichen Zhao, Cheng-Hung Hou, Yun-Wen You, Jing-Jong Shyue, Dengke Wang, Xiaojun Li, Qing Zhao, Qihuang Gong, Zheng-Hong Lu, Henry J Snaith, Rui Zhu

Abstract:

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices. A ‘buffer material’ between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber. Thus far, evaporable organic molecules and atomic-layer-deposited metal oxides have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.
More details from the publisher
Details from ORA
More details
More details

From generation to collection – impact of deposition temperature on charge carrier dynamics of high-performance vacuum-processed organic solar cells

Energy & Environmental Science Royal Society of Chemistry (RSC) (2024)

Authors:

Richard Adam Pacalaj, Yifan Dong, Ivan Ramirez, Roderick CI MacKenzie, Seyed Mehrdad Hosseini, Eva Bittrich, Julian Eliah Heger, Pascal Kaienburg, Subhrangsu Mukherjee, Jiaying Wu, Moritz Riede, Harald Ade, Peter Müller-Buschbaum, Martin Pfeiffer, James Robert Durrant

Abstract:

<jats:p>Substrate heating during co-evaporation of bulk heterojunction organic solar cells aids phase separation and improves performance. While recombination remains unaffected, hole transport improves due to more crystalline donor domains.</jats:p>
More details from the publisher
More details

Understanding the role of non-fullerene acceptor crystallinity on the charge transport properties and performance of organic solar cells

Journal of Materials Chemistry A Royal Society of Chemistry 11:30 (2023) 16263-16278

Authors:

Pierluigi Mondelli, Pascal Kaienburg, Francesco Silvestri, Rebecca Scatena, Claire Welton, Martine Grandjean, Vincent Lemaur, Eduardo Solano, Mathias Nyman, Peter Horton, Simon Coles, Esther Barrena, Moritz Riede, Paolo Radelli, David Beljonne, Gn Manjunatha Reddy, Graham Edward Morse

Abstract:

The acceptor crystallinity has long been associated with favourable organic solar cells (OSCs) properties such as high mobility and Fill Factor. In particular, this applies to acceptor materials such as fullerene-derivatives and the most recent Non-Fullerene Acceptors (NFAs), which are now surpassing 19% of Power Conversion Efficiency. Despite these advantages are commonly attributed to their 3-dimensional crystal packing motif in the single crystal, the bridge that links the acceptor crystal packing from single crystals to solar cells has not clearly been shown yet. In this work, we investigate the molecular organisation of seven NFAs (o-IDTBR, IDIC, ITIC, m-ITIC, 4TIC, 4TICO, m-4TICO), following the evolution of their packing motif in single-crystals, powder, and thin films made with pure NFAs and donor:NFA blends. We observed a good correlation between the NFA single crystal packing motif and their molecular arrangement in the bulk heterojunction. The NFA packing motif affects the material’s propensity to form highly crystalline domain in the blend. We specifically found that 3D reticular packing motifs show stronger ordering than 0D herringbone ones. However, the NFA packing motif is not directly correlating with device performance parameters: Although higher NFA crystallinity yields higher mobility, we found the domain purity to be more important for obtaining high efficiency organic solar cells by governing bimolecular recombination.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet