Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
CMP
Credit: Jack Hobhouse

Dr Pascal Kaienburg

Postdoctoral Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
pascal.kaienburg@physics.ox.ac.uk
Telephone: 01865282330
Robert Hooke Building, room G29
  • About
  • Publications

All-small-molecule organic solar cells – performance, electronic & microstructure properties

Proceedings of Materials for Sustainable Development Conference (MAT-SUS) (NFM22) Fundacio Scito (2022)

Authors:

Pascal Kaienburg, Moritz Riede
More details from the publisher
Details from ORA

Interfacial rearrangements and strain evolution in the thin film growth of ZnPc on glass

Physical Review Materials American Physical Society 6:3 (2022) 33401

Authors:

Thomas L Derrien, Andreas E Lauritzen, Pascal Kaienburg, Ellis Hancox, Chris Nicklin, Moritz Riede

Abstract:

We report on the characterization of the growth of vacuum-deposited zinc phthalocyanine (ZnPc) thin films on glass through a combination of in situ grazing incidence x-ray scattering, x-ray reflectivity, and atomic force microscopy. We found that the growth at room temperature proceeds via the formation of two structurally unique substrate-induced interfacial layers, followed by the growth of the γ -ZnPc polymorph thereafter (thickness ≈ 1.0 nm). As the growth of the bulk γ -ZnPc progresses, a substantial out-of-plane lattice strain ( ≈ 15 % relative to γ -ZnPc powder) is continually relaxed during the thin film growth. The rate of strain relaxation was slowed after a thickness of ≈ 13 nm, corresponding to the transition from layer growth to island growth. The findings reveal the real-time microstructural evolution of ZnPc and highlight the importance of substrate-induced strain on thin film growth.
More details from the publisher
Details from ORA
More details

Charge transfer state characterization and voltage losses of organic solar cells

Journal of Physics: Materials IOP Publishing 5:2 (2022) 24002

Authors:

Anna Jungbluth, Pascal Kaienburg, Moritz Riede

Abstract:

A correct determination of voltage losses is crucial for the development of organic solar cells (OSCs) with improved performance. This requires an in-depth understanding of the properties of interfacial charge transfer (CT) states, which not only set the upper limit for the open-circuit voltage of a system, but also govern radiative and non-radiative recombination processes. Over the last decade, different approaches have emerged to classify voltage losses in OSCs that rely on a generic detailed balance approach or additionally include CT state parameters that are specific to OSCs. In the latter case, a correct determination of CT state properties is paramount. In this work, we summarize the different frameworks used today to calculate voltage losses and provide an in-depth discussion of the currently most important models used to characterize CT state properties from absorption and emission data of organic thin films and solar cells. We also address practical concerns during the data recording, analysis, and fitting process. Departing from the classical two-state Marcus theory approach, we discuss the importance of quantized molecular vibrations and energetic hybridization effects in organic donor-acceptor systems with the goal to providing the reader with a detailed understanding of when each model is most appropriate.
More details from the publisher
Details from ORA
More details

Assessing the photovoltaic quality of vacuum-thermal evaporated organic semiconductor blends

Advanced Materials Wiley 34:22 (2021) 2107584

Authors:

Pascal Kaienburg, Anna Jungbluth, Irfan Habib, Sameer Vajjala Kesava, Mathias Nyman, Moritz K Riede

Abstract:

Vacuum-thermal evaporation (VTE) is a highly relevant fabrication route for organic solar cells (OSCs), especially on an industrial scale as proven by the commercialization of organic light emitting diode-based displays. While OSC performance is reported for a range of VTE-deposited molecules, a comprehensive assessment of donor:acceptor blend properties with respect to their photovoltaic performance is scarce. Here, the organic thin films and solar cells of three select systems are fabricated and ellipsometry, external quantum efficiency with high dynamic range, as well as OTRACE are measured to quantify absorption, voltage losses, and charge carrier mobility. These parameters are key to explain OSC performance and will help to rationalize the performance of other material systems reported in literature as the authors’ methodology is applicable beyond VTE systems. Furthermore, it can help to judge the prospects of new molecules in general. The authors find large differences in the measured values and find that today's VTE OSCs can reach high extinction coefficients, but only moderate mobility and voltage loss compared to their solution-processed counterparts. What needs to be improved for VTE OSCs is outlined to again catch up with their solution-processed counterparts in terms of power conversion efficiency.
More details from the publisher
Details from ORA
More details
More details

Thermally evaporated donor molecules for low-voltage loss organic solar cells

Proceedings of 13th Conference on Hybrid and Organic Photovoltaics (HOPV21) Fundacio Scito (2021)

Authors:

Pascal Kaienburg, Helen Bristow, Anna Jungbluth, Irfan Habib, David Beljonne, Moritz Riede
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet