Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Alexander Karlberg

Academic Visitor

Research theme

  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
alexander.karlberg@physics.ox.ac.uk
Telephone: +41764304276
Rudolf Peierls Centre for Theoretical Physics
  • About
  • Research
  • Teaching
  • Prizes, awards and recognition
  • Publications

Spin correlations in final-state parton showers and jet observables

European Physical Journal C Springer 81:8 (2021) 681

Authors:

Gavin P Salam, Alexander Karlberg, Ludovic Scyboz, Rob Verheyen

Abstract:

As part of a programme to develop parton showers with controlled logarithmic accuracy, we consider the question of collinear spin correlations within the PanScales family of parton showers. We adapt the well-known Collins–Knowles spin-correlation algorithm to PanScales antenna and dipole showers, using an approach with similarities to that taken by Richardson and Webster. To study the impact of spin correlations, we develop Lund-declustering based observables that are sensitive to spin-correlation effects both within and between jets and extend the MicroJets collinear single-logarithmic resummation code to include spin correlations. Together with a 3-point energy correlation observable proposed recently by Chen, Moult and Zhu, this provides a powerful set of constraints for validating the logarithmic accuracy of our shower results. The new observables and their resummation further open the pathway to phenomenological studies of these important quantum mechanical effects.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order.

Physical review letters 115:8 (2015) 082002

Authors:

Matteo Cacciari, Frédéric A Dreyer, Alexander Karlberg, Gavin P Salam, Giulia Zanderighi

Abstract:

We calculate the fully differential next-to-next-to-leading-order (NNLO) corrections to vector-boson fusion (VBF) Higgs boson production at proton colliders, in the limit in which there is no cross talk between the hadronic systems associated with the two protons. We achieve this using a new "projection-to-Born" method that combines an inclusive NNLO calculation in the structure-function approach and a suitably factorized next-to-leading-order VBF Higgs plus three-jet calculation, using appropriate Higgs plus two-parton counterevents. An earlier calculation of the fully inclusive cross section had found small NNLO corrections, at the 1% level. In contrast, the cross section after typical experimental VBF cuts receives NNLO contributions of about (5-6)%, while differential distributions show corrections of up to (10-12)% for some standard observables. The corrections are often outside the next-to-leading-order scale-uncertainty band.
More details from the publisher
More details
More details
Details from ArXiV

On the impact of non-factorisable corrections in VBF single and double Higgs production

Journal of High Energy Physics Springer 2020:10 (2020) 131

Authors:

Fa Dreyer, A Karlberg, L Tancredi

Abstract:

We study the non-factorisable QCD corrections, computed in the eikonal approximation, to Vector-Boson Fusion single and double Higgs production and show the combined factorisable and non-factorisable corrections for both processes at O(αs2). We investigate the validity of the eikonal approximation with and without selection cuts, and carry out an in-depth study of the relative size of the non-factorisable next-to-next-to-leading order corrections compared to the factorisable ones. In the case of single Higgs production, after selection cuts are applied, the non-factorisable corrections are found to be mostly contained within the factorisable scale uncertainty bands. When no cuts are applied, instead, the non-factorisable corrections are slightly outside the scale uncertainty band. Interestingly, for double Higgs production, we find that both before and after applying cuts, non-factorisable corrections are enhanced compared to the single Higgs case. We trace this enhancement to the existence of delicate cancellations between the various leading-order Feynman diagrams, which are partly spoiled by radiative corrections. All contributions studied here have been implemented in proVBFH v1.2.0 and proVBFHH v1.1.0.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Vector-boson fusion Higgs production at three loops in QCD

Physical Review Letters American Physical Society 117:7 (2016) 072001

Authors:

Frederic A Dreyer, Alexander Karlberg

Abstract:

We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Logarithmically-accurate and positive-definite NLO shower matching

(2025)

Authors:

Melissa van Beekveld, Silvia Ferrario Ravasio, Jack Helliwell, Alexander Karlberg, Gavin P Salam, Ludovic Scyboz, Alba Soto-Ontoso, Gregory Soyez, Silvia Zanoli
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet