Spin correlations in final-state parton showers and jet observables
European Physical Journal C Springer 81:8 (2021) 681
Abstract:
As part of a programme to develop parton showers with controlled logarithmic accuracy, we consider the question of collinear spin correlations within the PanScales family of parton showers. We adapt the well-known Collins–Knowles spin-correlation algorithm to PanScales antenna and dipole showers, using an approach with similarities to that taken by Richardson and Webster. To study the impact of spin correlations, we develop Lund-declustering based observables that are sensitive to spin-correlation effects both within and between jets and extend the MicroJets collinear single-logarithmic resummation code to include spin correlations. Together with a 3-point energy correlation observable proposed recently by Chen, Moult and Zhu, this provides a powerful set of constraints for validating the logarithmic accuracy of our shower results. The new observables and their resummation further open the pathway to phenomenological studies of these important quantum mechanical effects.Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order.
Physical review letters 115:8 (2015) 082002
Abstract:
We calculate the fully differential next-to-next-to-leading-order (NNLO) corrections to vector-boson fusion (VBF) Higgs boson production at proton colliders, in the limit in which there is no cross talk between the hadronic systems associated with the two protons. We achieve this using a new "projection-to-Born" method that combines an inclusive NNLO calculation in the structure-function approach and a suitably factorized next-to-leading-order VBF Higgs plus three-jet calculation, using appropriate Higgs plus two-parton counterevents. An earlier calculation of the fully inclusive cross section had found small NNLO corrections, at the 1% level. In contrast, the cross section after typical experimental VBF cuts receives NNLO contributions of about (5-6)%, while differential distributions show corrections of up to (10-12)% for some standard observables. The corrections are often outside the next-to-leading-order scale-uncertainty band.On the impact of non-factorisable corrections in VBF single and double Higgs production
Journal of High Energy Physics Springer 2020:10 (2020) 131
Abstract:
We study the non-factorisable QCD corrections, computed in the eikonal approximation, to Vector-Boson Fusion single and double Higgs production and show the combined factorisable and non-factorisable corrections for both processes at O(αs2). We investigate the validity of the eikonal approximation with and without selection cuts, and carry out an in-depth study of the relative size of the non-factorisable next-to-next-to-leading order corrections compared to the factorisable ones. In the case of single Higgs production, after selection cuts are applied, the non-factorisable corrections are found to be mostly contained within the factorisable scale uncertainty bands. When no cuts are applied, instead, the non-factorisable corrections are slightly outside the scale uncertainty band. Interestingly, for double Higgs production, we find that both before and after applying cuts, non-factorisable corrections are enhanced compared to the single Higgs case. We trace this enhancement to the existence of delicate cancellations between the various leading-order Feynman diagrams, which are partly spoiled by radiative corrections. All contributions studied here have been implemented in proVBFH v1.2.0 and proVBFHH v1.1.0.Vector-boson fusion Higgs production at three loops in QCD
Physical Review Letters American Physical Society 117:7 (2016) 072001