The great escape: understanding the connection between Ly α emission and LyC escape in simulated JWST analogues
Monthly Notices of the Royal Astronomical Society Oxford University Press 532:2 (2024) 2463-2484
Abstract:
Constraining the escape fraction of Lyman Continuum (LyC) photons from high-redshift galaxies is crucial to understanding reionization. Recent observations have demonstrated that various characteristics of the Ly α emission line correlate with the inferred LyC escape fraction (f LyC esc ) of low-redshift galaxies. Using a data set of 9600 mock Ly α spectra of star-forming galaxies at 4.64 ≤ z ≤ 6 from the SPHINX20 cosmological radiation hydrodynamical simulation, we study the physics controlling the escape of Ly α and LyC photons. We find that our mock Ly α observations are representative of high-redshift observations and that typical observational methods tend to overpredict the Ly α escape fraction (f Ly α esc ) by as much as 2 dex. We investigate the correlations between f LyC esc and f Ly α esc , Ly α equivalent width (Wλ(Ly α)), peak separation (vsep), central escape fraction (fcen), and red peak asymmetry (Ared f ). We find that f Ly α esc and fcen are good diagnostics for LyC leakage, selecting for galaxies with lower neutral gas densities and less UV attenuation that have recently experienced supernova feedback. In contrast, Wλ(Ly α) and vsep are found to be necessary but insufficient diagnostics, while Ared f carries little information. Finally, we use stacks of Ly α, H α, and F150W mock surface brightness profiles to find that galaxies with high f LyC esc tend to have less extended Ly α and F150W haloes but larger H α haloes than their non-leaking counterparts. This confirms that Ly α spectral profiles and surface brightness morphology can be used to better understand the escape of LyC photons from galaxies during the epoch of reionization.Nebular dominated galaxies: insights into the stellar initial mass function at high redshift
Monthly Notices of the Royal Astronomical Society Oxford University Press (2024)
Abstract:
We identify a low-metallicity (12 + log(O/H) = 7.59) Ly𝛼-emitting galaxy at 𝑧 = 5.943 with evidence of a strong Balmer jump, arising from nebular continuum. While Balmer jumps are sometimes observed in low-redshift star-forming galaxies, this galaxy also exhibits a steep turnover in the UV continuum. Such turnovers are typically attributed to absorption by a damped Ly𝛼 system (DLA); however, the shape of the turnover and the high observed Ly𝛼 escape fraction ( 𝑓esc,Ly𝛼 ∼ 27%) is also consistent with strong nebular two-photon continuum emission. Modelling the UV turnover with a DLA requires extreme column densities (𝑁HI > 1023 cm−2 ), and simultaneously explaining the high 𝑓esc,Ly𝛼 requires a fine-tuned geometry. In contrast, modelling the spectrum as primarily nebular provides a good fit to both the continuum and emission lines, motivating scenarios in which (a) we are observing only nebular emission or (b) the ionizing source is powering extreme nebular emission that outshines the stellar emission. The nebular-only scenario could arise if the ionising source has ‘turned off’ more recently than the recombination timescale (∼1,000 yr), hence we may be catching the object at a very specific time. Alternatively, hot stars with 𝑇eff ≳ 105 K (e.g. Wolf-Rayet or low-metallicity massive stars) produce enough ionizing photons such that the two-photon emission becomes visible. While several stellar SEDs from the literature fit the observed spectrum well, the hot-star scenario requires that the number of ≳ 50 M⊙ stars relative to ∼ 5 − 50 M⊙ stars is significantly higher than predicted by typical stellar initial mass functions (IMFs). The identification of more galaxies with similar spectra may provide evidence for a top-heavy IMF at high redshift.The Highest-redshift Balmer Breaks as a Test of ΛCDM
The Astrophysical Journal American Astronomical Society 967:2 (2024) 172
Abstract:
Recent studies have reported tension between the presence of luminous, high-redshift galaxies and the halo mass functions predicted by standard cosmology. Here, an improved test is proposed using the presence of high-redshift Balmer breaks to probe the formation of early 104–105 M ⊙ baryonic minihalos. Unlike previous tests, this does not depend upon the mass-to-light ratio and has only a slight dependence upon the metallicity, stellar initial mass function, and star formation history, which are all weakly constrained at high redshift. We show that the strongest Balmer breaks allowed at z = 9 using the simplest ΛCDM cosmological model would allow a D 4000 as high as 1.26 under idealized circumstances and D 4000 ≤ 1.14 including realistic feedback models. Since current photometric template fitting to JWST sources infers the existence of stronger Balmer breaks out to z ≳ 11, upcoming spectroscopic follow-up will either demonstrate those templates are invalid at high redshift or imply new physics beyond “vanilla” ΛCDM.The impact of nebular Lyman-Continuum on ionizing photons budget and escape fractions from galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 530:2 (2024) 2133-2145
Publisher Correction: Deciphering Lyman-α emission deep into the epoch of reionization
Nature Astronomy Springer Nature 8:4 (2024) 546-546