Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

David Keen

Visiting Professor

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
david.keen@physics.ox.ac.uk
Telephone: 01865 (2)72310
Clarendon Laboratory, room 106
  • About
  • Publications

Highly porous metal-organic framework glass design and application for gas separation membranes.

Nature communications 16:1 (2025) 1622

Authors:

Shichun Li, Chao Ma, Jingwei Hou, Shuwen Yu, Aibing Chen, Juan Du, Philip A Chater, Dean S Keeble, Zhihua Qiao, Chongli Zhong, David A Keen, Yu Liu, Thomas D Bennett

Abstract:

Crystalline metal-organic frameworks (MOFs) exhibit enormous potential application in gas separation, thanks to their highly porous structures and precise pore size distributions. Nevertheless, the inherent limitations in mechanical stability of crystalline MOFs cause challenges in processing MOF powders into bulky structures, particularly for membrane filtrations. Melt-quenched MOF glasses boast excellent processability due to liquid-like properties. However, the melting process diminishes the inherent porosity, leading to reduced gas adsorption capacities and lower gas diffusion coefficients. In this work, we demonstrated that enhancing the porosity of MOF glasses is achievable through topological engineering on the crystalline precursors. Crystalline zeolitic imidazolate frameworks (ZIFs) with large 12-membered rings pores, including AFI and CAN topology, were synthesized by using both structure-directing agents and mixed organic ligands. The large pores are partially preserved in the melt-quenched glass as evidenced by high-pressure CO2 absorption at 3000 kPa. The agAFI-[Zn(Im)1.68(bIm)0.32] glass was then fabricated into self-supported membranes, which shows high gas separation performance, for example, CO2 permeance of 3.7 × 104 GPU with a CO2/N2 selectivity of 14.8.
More details from the publisher
More details
More details

Author Correction: Siliceous zeolite-derived topology of amorphous silica.

Communications chemistry 8:1 (2025) 23

Authors:

Hirokazu Masai, Shinji Kohara, Toru Wakihara, Yuki Shibazaki, Yohei Onodera, Atsunobu Masuno, Sohei Sukenaga, Koji Ohara, Yuki Sakai, Julien Haines, Claire Levelut, Philippe Hébert, Aude Isambert, David A Keen, Masaki Azuma
More details from the publisher
More details

(RPh3P)[Mn(dca)3]: A Family of Glass-Forming Hybrid Organic-Inorganic Materials.

Inorganic chemistry 63:52 (2024) 24812-24824

Authors:

Bikash Kumar Shaw, Lucia Corti, Joshua M Tuffnell, Celia Castillo-Blas, Patrick Schlachta, Georgina P Robertson, Lauren McHugh, Adam F Sapnik, Sebastian A Hallweger, Philip A Chater, Gregor Kieslich, David A Keen, Sian E Dutton, Frédéric Blanc, Thomas D Bennett

Abstract:

ABX3-type hybrid organic-inorganic structures have recently emerged as a new class of meltable materials. Here, by the use of phenylphosphonium derivatives as A cation, we study liquid- and glass-forming behavior of a new family of hybrid structures, (RPh3P)[Mn(dca)3] (R = Me, Et, Ph; dca = dicyanamide). These new compounds melt at 196-237 °C (Tm) and then vitrify upon cooling to room temperature, forming glasses. In situ glass formation of this new family of materials was probed on a large scale using a variable-temperature PXRD experiment. Structure analyses of the crystalline and the glasses were carried out by solid-state nuclear magnetic resonance spectroscopy and synchrotron X-ray total scattering techniques for using the pair distribution function. The mechanical properties of the glasses produced were evaluated showing promising durability. Thermal and electrical conductivities showed low thermal conductivities (κ ∼ 0.07-0.09 W m-1 K-1) and moderate electrical conductivities (σ ∼ 10-4-10-6 S m-1) at room temperature, suggesting that by the precise control of the A cation, we can tune meltable hybrid structures from moderate conductors to efficient thermal insulators. Our results raise attention on the practical use of this new hybrid material in applications including, e.g., photovoltaic devices to prevent light-deposited heat (owing to low κRT), energy harvesting thermoelectric, etc., and advance the structure-property understanding.
More details from the publisher
More details
More details

Integrating crystallographic and computational approaches to carbon-capture materials for the mitigation of climate change

Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 12:38 (2024) 25678-25695

Authors:

Eric Cockayne, Austin McDannald, Winnie Wong-Ng, Yu-Sheng Chen, Jason Benedict, Felipe Gándara Barragán, Christopher H Hendon, David A Keen, Ute Kolb, Lan Li, Shengqian Ma, William Morris, Aditya Nandy, Tomče Runčevski, Mustapha Soukri, Anuroop Sriram, Janice A Steckel, John Findley, Chris Wilmer, Taner Yildirim, Wei Zhou, Igor Levin, Craig Brown
More details from the publisher
More details

Observation of a Reversible Order-Order Transition in a Metal-Organic Framework - Ionic Liquid Nanocomposite Phase-Change Material.

Small (Weinheim an der Bergstrasse, Germany) 20:43 (2024) e2303315

Authors:

Vahid Nozari, Ayda Nemati Vesali Azar, Roman Sajzew, Celia Castillo-Blas, Ayano Kono, Martin Oschatz, David A Keen, Philip A Chater, Georgina P Robertson, James MA Steele, Luis León-Alcaide, Alexander Knebel, Christopher W Ashling, Thomas D Bennett, Lothar Wondraczek

Abstract:

Metal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition - absent for the bare MOF or IL - provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C. Structural analysis and in situ monitoring indicate an electrostatic interaction between the IL molecules and the Cu paddle-wheels, leading to a decrease in pore symmetry at low temperature. These interactions are reversibly released above the transition temperature, which reflects in a volume expansion of the MOF-IL composite.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet