Author Correction: Resolving length-scale-dependent transient disorder through an ultrafast phase transition.
Nature materials 23:8 (2024) 1150
Resolving length-scale-dependent transient disorder through an ultrafast phase transition.
Nature materials 23:8 (2024) 1041-1047
Abstract:
Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here we demonstrate such a measurement of CuIr2S4 optically pumped from its low-temperature Ir-dimerized phase. Dimers are optically suppressed without spatial correlation, generating a structure whose level of disorder strongly depends on the length scale. The redevelopment of structural ordering over tens of picoseconds is directly tracked over both space and time as a transient state is approached. This measurement demonstrates the crucial role of local structure and disorder in non-equilibrium processes as well as the feasibility of accessing this information with state-of-the-art XFEL facilities.Loading and thermal behaviour of ZIF-8 metal-organic framework-inorganic glass composites.
Dalton transactions (Cambridge, England : 2003) 53:25 (2024) 10655-10665
Abstract:
Here we describe the synthesis of a compositional series of metal-organic framework crystalline-inorganic glass composites (MOF-CIGCs) containing ZIF-8 and an inorganic phosphate glass, 20Na2O-10NaCl-70P2O5, to expand the library of host matrices for metal-organic frameworks. By careful selection of the inorganic glass component, a relatively high loading of ZIF-8 (70 wt%) was achieved, which is the active component of the composite. A Zn⋯O-P interfacial bond, previously identified in similar composites/hybrid blends, was suggested by analysis of the total scattering pair distribution function data. Additionally, CO2 and N2 sorption and variable-temperature PXRD experiments were performed to assess the composites' properties.Local Structure and Dynamics in MPt(CN) 6 Prussian Blue Analogues
Chemistry of Materials American Chemical Society 36:11 (2024) 5796-5804
Abstract:
We use a combination of X-ray pair distribution function (PDF) measurements, lattice dynamical calculations, and ab initio density functional theory (DFT) calculations to study the local structure and dynamics in various MPt(CN)6 Prussian blue analogues. In order to link directly the local distortions captured by the PDF with the lattice dynamics of this family, we develop and apply a new “interaction-space” PDF refinement approach. This approach yields effective harmonic force constants, from which the (experiment-derived) low-energy phonon dispersion relations can be approximated. Calculation of the corresponding Grüneisen parameters allows us to identify the key modes responsible for negative thermal expansion (NTE) as arising from correlated tilts of coordination octahedra. We compare our results against the phonon dispersion relations determined using DFT calculations, which identify the same NTE mechanism.Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites.
Chemical science 15:19 (2024) 7198-7205