Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

David Keen

Visiting Professor

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
david.keen@physics.ox.ac.uk
Telephone: 01865 (2)72310
Clarendon Laboratory, room 106
  • About
  • Publications

Author Correction: Resolving length-scale-dependent transient disorder through an ultrafast phase transition.

Nature materials 23:8 (2024) 1150

Authors:

Jack Griffiths, Ana F Suzana, Longlong Wu, Samuel D Marks, Vincent Esposito, Sébastien Boutet, Paul G Evans, JF Mitchell, Mark PM Dean, David A Keen, Ian Robinson, Simon JL Billinge, Emil S Bozin
More details from the publisher
More details
More details

Resolving length-scale-dependent transient disorder through an ultrafast phase transition.

Nature materials 23:8 (2024) 1041-1047

Authors:

Jack Griffiths, Ana F Suzana, Longlong Wu, Samuel D Marks, Vincent Esposito, Sébastien Boutet, Paul G Evans, JF Mitchell, Mark PM Dean, David A Keen, Ian Robinson, Simon JL Billinge, Emil S Bozin

Abstract:

Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here we demonstrate such a measurement of CuIr2S4 optically pumped from its low-temperature Ir-dimerized phase. Dimers are optically suppressed without spatial correlation, generating a structure whose level of disorder strongly depends on the length scale. The redevelopment of structural ordering over tens of picoseconds is directly tracked over both space and time as a transient state is approached. This measurement demonstrates the crucial role of local structure and disorder in non-equilibrium processes as well as the feasibility of accessing this information with state-of-the-art XFEL facilities.
More details from the publisher
More details
More details

Loading and thermal behaviour of ZIF-8 metal-organic framework-inorganic glass composites.

Dalton transactions (Cambridge, England : 2003) 53:25 (2024) 10655-10665

Authors:

Ashleigh M Chester, Celia Castillo-Blas, Roman Sajzew, Bruno P Rodrigues, Giulio I Lampronti, Adam F Sapnik, Georgina P Robertson, Matjaž Mazaj, Daniel JM Irving, Lothar Wondraczek, David A Keen, Thomas D Bennett

Abstract:

Here we describe the synthesis of a compositional series of metal-organic framework crystalline-inorganic glass composites (MOF-CIGCs) containing ZIF-8 and an inorganic phosphate glass, 20Na2O-10NaCl-70P2O5, to expand the library of host matrices for metal-organic frameworks. By careful selection of the inorganic glass component, a relatively high loading of ZIF-8 (70 wt%) was achieved, which is the active component of the composite. A Zn⋯O-P interfacial bond, previously identified in similar composites/hybrid blends, was suggested by analysis of the total scattering pair distribution function data. Additionally, CO2 and N2 sorption and variable-temperature PXRD experiments were performed to assess the composites' properties.
More details from the publisher
More details
More details

Local Structure and Dynamics in MPt(CN) 6 Prussian Blue Analogues

Chemistry of Materials American Chemical Society 36:11 (2024) 5796-5804

Authors:

Elodie A Harbourne, Helena Barker, Quentin Guéroult, John Cattermull, Liam AV Nagle-Cocco, Nikolaj Roth, John SO Evans, David A Keen, Andrew L Goodwin

Abstract:

We use a combination of X-ray pair distribution function (PDF) measurements, lattice dynamical calculations, and ab initio density functional theory (DFT) calculations to study the local structure and dynamics in various MPt­(CN)6 Prussian blue analogues. In order to link directly the local distortions captured by the PDF with the lattice dynamics of this family, we develop and apply a new “interaction-space” PDF refinement approach. This approach yields effective harmonic force constants, from which the (experiment-derived) low-energy phonon dispersion relations can be approximated. Calculation of the corresponding Grüneisen parameters allows us to identify the key modes responsible for negative thermal expansion (NTE) as arising from correlated tilts of coordination octahedra. We compare our results against the phonon dispersion relations determined using DFT calculations, which identify the same NTE mechanism.
More details from the publisher
Details from ORA
More details
More details

Mechanochemically-induced glass formation from two-dimensional hybrid organic-inorganic perovskites.

Chemical science 15:19 (2024) 7198-7205

Authors:

Chumei Ye, Giulio I Lampronti, Lauren N McHugh, Celia Castillo-Blas, Ayano Kono, Celia Chen, Georgina P Robertson, Liam AV Nagle-Cocco, Weidong Xu, Samuel D Stranks, Valentina Martinez, Ivana Brekalo, Bahar Karadeniz, Krunoslav Užarević, Wenlong Xue, Pascal Kolodzeiski, Chinmoy Das, Philip Chater, David A Keen, Siân E Dutton, Thomas D Bennett

Abstract:

Hybrid organic-inorganic perovskites (HOIPs) occupy a prominent position in the field of materials chemistry due to their attractive optoelectronic properties. While extensive work has been done on the crystalline materials over the past decades, the newly reported glasses formed from HOIPs open up a new avenue for perovskite research with their unique structures and functionalities. Melt-quenching is the predominant route to glass formation; however, the absence of a stable liquid state prior to thermal decomposition precludes this method for most HOIPs. In this work, we describe the first mechanochemically-induced crystal-glass transformation of HOIPs as a rapid, green and efficient approach for producing glasses. The amorphous phase was formed from the crystalline phase within 10 minutes of ball-milling, and exhibited glass transition behaviour as evidenced by thermal analysis techniques. Time-resolved in situ ball-milling with synchrotron powder diffraction was employed to study the microstructural evolution of amorphisation, which showed that the crystallite size reaches a comminution limit before the amorphisation process is complete, indicating that energy may be further accumulated as crystal defects. Total scattering experiments revealed the limited short-range order of amorphous HOIPs, and their optical properties were studied by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet