Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

David Keen

Visiting Professor

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
david.keen@physics.ox.ac.uk
Telephone: 01865 (2)72310
Clarendon Laboratory, room 106
  • About
  • Publications

Siliceous zeolite-derived topology of amorphous silica.

Communications chemistry 6:1 (2023) 269

Authors:

Hirokazu Masai, Shinji Kohara, Toru Wakihara, Yuki Shibazaki, Yohei Onodera, Atsunobu Masuno, Sohei Sukenaga, Koji Ohara, Yuki Sakai, Julien Haines, Claire Levelut, Philippe Hébert, Aude Isambert, David A Keen, Masaki Azuma

Abstract:

The topology of amorphous materials can be affected by mechanical forces during compression or milling, which can induce material densification. Here, we show that densified amorphous silica (SiO2) fabricated by cold compression of siliceous zeolite (SZ) is permanently densified, unlike densified glassy SiO2 (GS) fabricated by cold compression although the X-ray diffraction data and density of the former are identical to those of the latter. Moreover, the topology of the densified amorphous SiO2 fabricated from SZ retains that of crystalline SZ, whereas the densified GS relaxes to pristine GS after thermal annealing. These results indicate that it is possible to design new functional amorphous materials by tuning the topology of the initial zeolitic crystalline phases.
More details from the publisher
More details
More details

Superstructure and Correlated Na+ Hopping in a Layered Mg-Substituted Sodium Manganate Battery Cathode are Driven by Local Electroneutrality.

Chemistry of materials : a publication of the American Chemical Society 35:24 (2023) 10564-10583

Authors:

Euan N Bassey, Ieuan D Seymour, Joshua D Bocarsly, David A Keen, Guido Pintacuda, Clare P Grey

Abstract:

In this work, we present a variable-temperature 23Na NMR and variable-temperature and variable-frequency electron paramagnetic resonance (EPR) analysis of the local structure of a layered P2 Na-ion battery cathode material, Na0.67[Mg0.28Mn0.72]O2 (NMMO). For the first time, we elucidate the superstructure in this material by using synchrotron X-ray diffraction and total neutron scattering and show that this superstructure is consistent with NMR and EPR spectra. To complement our experimental data, we carry out ab initio calculations of the quadrupolar and hyperfine 23Na NMR shifts, the Na+ ion hopping energy barriers, and the EPR g-tensors. We also describe an in-house simulation script for modeling the effects of ionic mobility on variable-temperature NMR spectra and use our simulations to interpret the experimental spectra, available upon request. We find long-zigzag-type Na ordering with two different types of Na sites, one with high mobility and the other with low mobility, and reconcile the tendency toward Na+/vacancy ordering to the preservation of local electroneutrality. The combined magnetic resonance methodology for studying local paramagnetic environments from the perspective of electron and nuclear spins will be useful for examining the local structures of materials for devices.
More details from the publisher
More details
More details

Local structure and lithium-ion diffusion pathway of cubic Li 7 La 3 Zr 2 O 12 studied by total scattering and the Reverse Monte Carlo method

Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 11:46 (2023) 25516-25533

Authors:

Haolai Tian, Guanqun Cai, Lei Tan, He Lin, Anthony E Phillips, Isaac Abrahams, David A Keen, Dean S Keeble, Andy Fiedler, Junrong Zhang, Xiang Yang Kong, Martin T Dove
More details from the publisher
More details

Structural insights into hybrid immiscible blends of metal-organic framework and sodium ultraphosphate glasses.

Chemical science 14:42 (2023) 11737-11748

Authors:

Ashleigh M Chester, Celia Castillo-Blas, Roman Sajzew, Bruno P Rodrigues, Ruben Mas-Balleste, Alicia Moya, Jessica E Snelson, Sean M Collins, Adam F Sapnik, Georgina P Robertson, Daniel JM Irving, Lothar Wondraczek, David A Keen, Thomas D Bennett

Abstract:

Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.
More details from the publisher
More details
More details

Interfacial Bonding between a Crystalline Metal-Organic Framework and an Inorganic Glass.

Journal of the American Chemical Society 145:42 (2023) 22913-22924

Authors:

Celia Castillo-Blas, Ashleigh M Chester, Ronan P Cosquer, Adam F Sapnik, Lucia Corti, Roman Sajzew, Bruno Poletto-Rodrigues, Georgina P Robertson, Daniel JM Irving, Lauren N McHugh, Lothar Wondraczek, Frédéric Blanc, David A Keen, Thomas D Bennett

Abstract:

The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet