Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Jinhyub Kim

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Euclid
jinhyub.kim@physics.ox.ac.uk
Denys Wilkinson Building, room 555B
  • About
  • Publications

HI properties and star formation history of a fly-by pair of blue compact dwarf galaxies⋆

Astronomy & Astrophysics EDP Sciences 605 (2017) a54

Authors:

Jinhyub Kim, Aeree Chung, O Ivy Wong, Bumhyun Lee, Eon-Chang Sung, Lister Staveley-Smith
More details from the publisher

Euclid: I. Overview of the Euclid mission

Astronomy & Astrophysics, Volume 697, id.A1, 94 pp.

Authors:

Euclid Collaboration; Mellier, Y.; Abdurro'uf; Acevedo Barroso, J. A.; Achúcarro, A. ; Adamek, J.; Adam, R.; Addison, G. E.; Aghanim, N.; Aguena, M. ; Ajani, V.; Akrami, Y.; Al-Bahlawan, A. ; Alavi, A.; Albuquerque, I. S.; Alestas, G.; Alguero, G. ; Allaoui, A. ; Allen, S. W.; Allevato, V.; ...

Abstract:

The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015–2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14 000 deg2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance.
More details from the publisher
Details from ArXiV

Exploring the Masses of the Two Most Distant Gravitational Lensing Clusters at Cosmic Noon

The Astrophysical Journal, Volume 991, Issue 1, id.109, 10 pp.

Authors:

Kim, Jinhyub; Jee, M. James; Andreon, Stefano; Mroczkowski, Tony; Miller, Lance; van Marrewijk, Joshiwa; Khim, Hye Gyeong

Abstract:

Observations over the past decade have shown that galaxy clusters undergo the most transformative changes during the z = 1.5–2 epoch. However, challenges such as low lensing efficiency, high shape measurement uncertainty, and a scarcity of background galaxies have prevented us from characterizing their masses with weak gravitational lensing (WL) beyond redshift z ∼ 1.75. In this paper, we report the successful WL detection of JKCS 041 and XLSSC 122 at z = 1.80 and z = 1.98, respectively, utilizing deep infrared imaging data from the Hubble Space Telescope with careful removal of instrumental effects. These are the most distant clusters ever measured through WL. The mass peaks of JKCS 041 and XLSSC 122, which coincide with the X-ray peak positions of the respective clusters, are detected at the ∼3.7σ and ∼3.2σ levels, respectively. Assuming a single spherical Navarro–Frenk–White profile, we estimate that JKCS 041 has a virial mass of M200c = (5.4 ± 1.6) × 1014 M⊙, while the mass of XLSSC 122 is determined to be M200c = (3.3 ± 1.8) × 1014 M⊙. These WL masses are consistent with the estimates inferred from their X-ray observations. We conclude that although the probability of finding such massive clusters at their redshifts is certainly low, their masses can still be accommodated within the current ΛCDM paradigm.
More details from the publisher
Details from ArXiV

Head-to-Toe Measurement of El Gordo: Improved Analysis of the Galaxy Cluster ACT-CL J0102-4915 with New Wide-field Hubble Space Telescope Imaging Data

The Astrophysical Journal, Volume 923, Issue 1, id.101, 20 pp.

Authors:

Kim, Jinhyub; Jee, M. James; Hughes, John P.; Yoon, Mijin; HyeongHan, Kim; Menanteau, Felipe; Sifón, Cristóbal; Hovey, Luke; Arunachalam, Prasiddha

Abstract:

We present an improved weak-lensing (WL) study of the high-z (z = 0.87) merging galaxy cluster ACT-CL J0102-4915 ("El Gordo") based on new wide-field Hubble Space Telescope imaging data. The new imaging data cover the ~3.5 × ~3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary mass structure consisting of the northwestern (NW) and southeastern (SE) subclusters and the ~2σ dissociation between the SE mass peak and the X-ray cool core. We obtain the mass estimates of the subclusters by simultaneously fitting two Navarro-Frenk-White (NFW) halos without employing mass-concentration relations. The masses are MNW200c=9.9+2.1−2.2× 1014 and MSE200c=6.5+1.9−1.4× 1014 M ⊙ for the NW and SE subclusters, respectively. The mass ratio is consistent with our previous WL study but significantly different from the previous strong-lensing results. This discrepancy is attributed to the use of extrapolation in strong-lensing studies because the SE component possesses a higher concentration. By superposing the two best-fit NFW halos, we determine the total mass of El Gordo to be M200c=2.13+0.25−0.23× 1015 M ⊙, which is ~23% lower than our previous WL result [M 200c = (2.76 ± 0.51) × 1015 M ⊙]. Our updated mass is a more direct measurement, since we are not extrapolating to R 200c as in all previous studies. The new mass is compatible with the current ΛCDM cosmology.
More details from the publisher

Multiwavelength view of SPT-CL J2106-5844. The radio galaxies and the thermal and relativistic plasmas in a massive galaxy cluster merger at z ≃ 1.13

Astronomy & Astrophysics, Volume 650, id.A153, 18 pp.

Authors:

Di Mascolo, Luca; Mroczkowski, Tony; Perrott, Yvette; Rudnick, Lawrence; James Jee, M.; HyeongHan, Kim; Churazov, Eugene; Collier, Jordan D.; Diego, Jose M.; Hopkins, Andrew M.; Kim, Jinhyub; Koribalski, Bärbel S.; Marvil, Joshua D.; van der Burg, Remco; West, Jennifer L.

Abstract:

Context. SPT-CL J2106-5844 is among the most massive galaxy clusters at z > 1 yet discovered. While initially used in cosmological tests to assess the compatibility with Λ Cold Dark Matter cosmology of such a massive virialized object at this redshift, more recent studies indicate SPT-CL J2106-5844 is undergoing a major merger and is not an isolated system with a singular, well-defined halo.
Aims: We use sensitive, high spatial resolution measurements from the Atacama Large Millimeter/Submillimeter Array (ALMA) and Atacama Compact Array (ACA) of the thermal Sunyaev-Zeldovich (SZ) effect to reconstruct the pressure distribution of the intracluster medium in this system. These measurements are coupled with radio observations from the pilot survey for the Evolutionary Map of the Universe, using the Australian Square Kilometre Array Pathfinder (ASKAP), and the Australia Telescope Compact Array (ATCA) to search for diffuse nonthermal emission. Further, to better constrain the thermodynamic structure of the cluster, we complement our analysis with reprocessed archival Chandra observations.
Methods: We jointly fit the ALMA and ACA SZ data in uv-space using a Bayesian forward modeling technique. The ASKAP and low-frequency ATCA data are processed and imaged to specifically highlight any potential diffuse radio emission.
Results: In the ALMA and ACA SZ data, we reliably identify at high significance two main gas components associated with the mass clumps inferred from weak lensing. Our statistical test excludes at the ∼9.9σ level the possibility of describing the system with a single SZ component. While the components had been more difficult to identify in the X-ray data alone, we find that the bimodal gas distribution is supported by the X-ray hardness distribution. The EMU radio observations reveal a diffuse radio structure ∼400 kpc in projected extent along the northwest-southeast direction, indicative of strong activity from the active galactic nucleus within the brightest cluster galaxy. Interestingly, a putative optical star-forming filamentary structure detected in the HST image is in an excellent alignment with the radio structure, albeit on a smaller scale.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet