Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Thaddeus Komacek

Associate Professor of Physics of Exoplanet Atmospheres

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
tad.komacek@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209D
  • About
  • Teaching
  • Publications

Author Correction: Analogous response of temperate terrestrial exoplanets and Earth's climate dynamics to greenhouse gas supplement.

Scientific reports 13:1 (2023) 15442

Authors:

Assaf Hochman, Thaddeus D Komacek, Paolo De Luca
More details from the publisher
More details

A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b.

Nature 620:7973 (2023) 292-298

Authors:

Louis-Philippe Coulombe, Björn Benneke, Ryan Challener, Anjali AA Piette, Lindsey S Wiser, Megan Mansfield, Ryan J MacDonald, Hayley Beltz, Adina D Feinstein, Michael Radica, Arjun B Savel, Leonardo A Dos Santos, Jacob L Bean, Vivien Parmentier, Ian Wong, Emily Rauscher, Thaddeus D Komacek, Eliza M-R Kempton, Xianyu Tan, Mark Hammond, Neil T Lewis, Michael R Line, Elspeth KH Lee, Hinna Shivkumar, Ian JM Crossfield, Matthew C Nixon, Benjamin V Rackham, Hannah R Wakeford, Luis Welbanks, Xi Zhang, Natalie M Batalha, Zachory K Berta-Thompson, Quentin Changeat, Jean-Michel Désert, Néstor Espinoza, Jayesh M Goyal, Joseph Harrington, Heather A Knutson, Laura Kreidberg, Mercedes López-Morales, Avi Shporer, David K Sing, Kevin B Stevenson, Keshav Aggarwal, Eva-Maria Ahrer, Munazza K Alam, Taylor J Bell, Jasmina Blecic, Claudio Caceres, Aarynn L Carter, Sarah L Casewell, Nicolas Crouzet, Patricio E Cubillos, Leen Decin, Jonathan J Fortney, Neale P Gibson, Kevin Heng, Thomas Henning, Nicolas Iro, Sarah Kendrew, Pierre-Olivier Lagage, Jérémy Leconte, Monika Lendl, Joshua D Lothringer, Luigi Mancini, Thomas Mikal-Evans, Karan Molaverdikhani, Nikolay K Nikolov, Kazumasa Ohno, Enric Palle, Caroline Piaulet, Seth Redfield, Pierre-Alexis Roy, Shang-Min Tsai, Olivia Venot, Peter J Wheatley

Abstract:

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1-3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3-12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13 instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σ confidence) and evidence for optical opacity, possibly attributable to H-, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance ('metallicity', [Formula: see text] times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.
More details from the publisher
More details
More details

Analogous response of temperate terrestrial exoplanets and Earth's climate dynamics to greenhouse gas supplement

(2023)

Authors:

Assaf Hochman, Thaddeus D Komacek, Paolo De Luca
More details from the publisher
Details from ArXiV

Analogous response of temperate terrestrial exoplanets and Earth's climate dynamics to greenhouse gas supplement.

Scientific reports 13:1 (2023) 11123

Authors:

Assaf Hochman, Thaddeus D Komacek, Paolo De Luca

Abstract:

Humanity is close to characterizing the atmospheres of rocky exoplanets due to the advent of JWST. These astronomical observations motivate us to understand exoplanetary atmospheres to constrain habitability. We study the influence greenhouse gas supplement has on the atmosphere of TRAPPIST-1e, an Earth-like exoplanet, and Earth itself by analyzing ExoCAM and CMIP6 model simulations. We find an analogous relationship between CO2 supplement and amplified warming at non-irradiated regions (night side and polar)-such spatial heterogeneity results in significant global circulation changes. A dynamical systems framework provides additional insight into the vertical dynamics of the atmospheres. Indeed, we demonstrate that adding CO2 increases temporal stability near the surface and decreases stability at low pressures. Although Earth and TRAPPIST-1e take entirely different climate states, they share the relative response between climate dynamics and greenhouse gas supplements.
More details from the publisher
More details

Emergent Spectral Fluxes of Hot Jupiters: An Abrupt Rise in Dayside Brightness Temperature Under Strong Irradiation

The Astronomical Journal American Astronomical Society 165:3 (2023) 104

Authors:

Drake Deming, Michael R Line, Heather A Knutson, Ian JM Crossfield, Eliza M-R Kempton, Thaddeus D Komacek, Nicole L Wallack, Guangwei Fu
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet