Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Thaddeus Komacek

Associate Professor of Physics of Exoplanet Atmospheres

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
tad.komacek@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 209D
  • About
  • Teaching
  • Research
  • Publications

Horizontal and vertical exoplanet thermal structure from a JWST spectroscopic eclipse map

Nature Astronomy Springer Nature (2025) 1-12

Authors:

Ryan C Challener, Megan Weiner Mansfield, Patricio E Cubillos, Anjali AA Piette, Louis-Philippe Coulombe, Hayley Beltz, Jasmina Blecic, Emily Rauscher, Jacob L Bean, Björn Benneke, Eliza M-R Kempton, Joseph Harrington, Thaddeus D Komacek, Vivien Parmentier, SL Casewell, Nicolas Iro, Luigi Mancini, Matthew C Nixon, Michael Radica, Maria E Steinrueck, Luis Welbanks, Natalie M Batalha, Claudio Caceres, Ian JM Crossfield, Nicolas Crouzet, Jean-Michel Désert, Karan Molaverdikhani, Nikolay K Nikolov, Enric Palle, Benjamin V Rackham, Everett Schlawin, David K Sing, Kevin B Stevenson, Xianyu Tan, Jake D Turner, Xi Zhang

Abstract:

Highly irradiated giant exoplanets known ‘ultrahot Jupiters’ are anticipated to exhibit large variations of atmospheric temperature and chemistry as a function of longitude, latitude and altitude. Previous observations have hinted at these variations, but the existing data have been fundamentally restricted to probing hemisphere-integrated spectra, thereby providing only coarse information on atmospheric gradients. Here we present a spectroscopic eclipse map of an extrasolar planet, resolving the atmosphere in multiple dimensions simultaneously. We analyse a secondary eclipse of the ultrahot Jupiter WASP-18b observed with the Near Infrared Imager and Slitless Spectrograph instrument on the JWST. The mapping reveals weaker longitudinal temperature gradients than were predicted by theoretical models, indicating the importance of hydrogen dissociation and/or nightside clouds in shaping global thermal emission. In addition, we identify two thermally distinct regions of the planet’s atmosphere: a ‘hotspot’ surrounding the substellar point and a ‘ring’ near the dayside limbs. The hotspot region shows a strongly inverted thermal structure due to the presence of optical absorbers and a water abundance marginally lower than the hemispheric average, in accordance with theoretical predictions. The ring region shows colder temperatures and poorly constrained chemical abundances. Similar future analyses will reveal the three-dimensional thermal, chemical and dynamical properties of a broad range of exoplanet atmospheres.
More details from the publisher
More details

Possible Evidence for the Presence of Volatiles on the Warm Super-Earth TOI-270 b

The Astronomical Journal American Astronomical Society 170:4 (2025) 226

Authors:

Louis-Philippe Coulombe, Björn Benneke, Joshua Krissansen-Totton, Alexandrine L’Heureux, Caroline Piaulet-Ghorayeb, Michael Radica, Pierre-Alexis Roy, Eva-Maria Ahrer, Charles Cadieux, Yamila Miguel, Hilke E Schlichting, Elisa Delgado-Mena, Christopher Monaghan, Hanna Adamski, Eshan Raul, Ryan Cloutier, Thaddeus D Komacek, Jake Taylor, Cyril Gapp, Romain Allart, François Bouchy, Bruno L Canto Martins, Neil J Cook, René Doyon

Abstract:

The search for atmospheres on rocky exoplanets is a crucial step in understanding the processes driving atmosphere formation, retention, and loss. Past studies have revealed the existence of planets interior to the radius valley with densities lower than would be expected for pure-rock compositions, indicative of the presence of large volatile inventories, which could facilitate atmosphere retention. Here, we present an analysis of the JWST/NIRSpec G395H transmission spectrum of the warm ( Teq, AB=0=569 K) super-Earth TOI-270 b (Rp = 1.306 R⊕), captured alongside the transit of TOI-270 d. The JWST white light-curve transit depth updates TOI-270 b’s density to ρp = 3.7 ± 0.5 g cm−3, inconsistent at 4.4σ with an Earth-like composition. Instead, the planet is best explained by a nonzero, percent-level water mass fraction, possibly residing on the surface or stored within the interior. The JWST transmission spectrum shows possible spectroscopic evidence for the presence of this water as part of an atmosphere on TOI-270 b, favoring an H2O-rich steam atmosphere model over a flat spectrum ( lnB=0.3–3.2 , inconclusive to moderate), with the exact significance depending on whether an offset parameter between the NIRSpec detectors is included. We leverage the transit of the twice-larger TOI-270 d crossing the stellar disk almost simultaneously to rule out the alternative hypothesis that the transit light source effect could have caused the water feature in TOI-270 b’s observed transmission spectrum. Planetary evolution modeling furthermore shows that TOI-270 b could sustain a significant atmosphere on gigayear timescales, despite its high stellar irradiation, if it formed with a large initial volatile inventory.
More details from the publisher
Details from ORA
More details

A carbon-rich atmosphere on a windy pulsar planet

(2025)

Authors:

Michael Zhang, Maya Beleznay, Timothy D Brandt, Roger W Romani, Peter Gao, Hayley Beltz, Matthew Bailes, Matthew C Nixon, Jacob L Bean, Thaddeus D Komacek, Brandon P Coy, Guangwei Fu, Rafael Luque, Daniel J Reardon, Emma Carli, Ryan M Shannon, Jonathan J Fortney, Anjali AA Piette, M Coleman Miller, Jean-Michel Desert

Circulation models and JWST observations of inflated ultra-hot Jupiters

Copernicus Publications (2025)

Authors:

John Allen, Thaddeus Komacek

Abstract:

Introduction: Recent advances in observation with the JWST and high-resolution ground-based instruments have enabled the study of exoplanets to progress towards atmospheric characterisation, as opposed to merely detection. Hot and ultra-hot Jupiters remain among the best characterised and studied class of exoplanet, due to their large sizes and close orbits, however how the internal heating and resulting radius inflation of bloated ultra-hot Jupiters and related coupling to the internal magnetic field impacts their atmospheric circulation remains an open question. Moreover, the impact of atmospheric dynamics on observable properties can now be studied in detail. This study investigates the effect of varying both atmospheric drag and internal heat flux on the observable properties of WASP-76b, with comparisons made to JWST NIRSpec white-light phase curves. In addition, we perform a broader parameter sweep using the SPARC/MITgcm to investigate the influence of internal heating and inflated radii on the observable properties of hot and ultra-hot Jupiters.Methods: A suite of general circulation models are run, which solve the primitive equations of meteorology coupled to non-grey correlated-k radiative transfer with the SPARC/MITgcm [1]. The effect of Lorentz forces is represented by changing a spatially constant drag timescale , and for WASP-76b we consider two different internal heat fluxes for comparison, across the range of predicted values for hot and ultra-hot Jupiters [2]. We then will perform a broader parameter sweep, exploring the space of inflated-radii hot and ultra-hot Jupiters by covering a range of irradiation levels from zero-albedo full-redistribution equilibrium temperatures of 1000 – 3200K, again using the SPARC/MITgcm. This parameter space is inclusive of most inflated gas-giant planets, excluding KELT-9b, and will allow us to study the impact of internal heating on atmospheric circulation, with interior heating and evolution modelled using MESA [3]. We then use the gCMCRT radiative transfer code [4] to post-process the GCM results to produce simulated phase curves.Results: The key result from this study is shown in Figure 1, with simulated phase curves shown in comparison to Spitzer telescope data [5] at 3.6mm. We make the comparison to Spitzer data here as a placeholder for the comparison to JWST NIRSpec data, as the JWST data is not yet published. Figure 3 shows the impact of the interior heat flux on the internal temperature structure of WASP-76b. There is no observable difference between the interior heat flux scenarios. Figures 2 and 4 show characteristics of the atmospheric dynamics and temperature structure. Strong drag acts to suppress all winds throughout the atmosphere, as is expected, while intermediate drag removes the offset of the hot spot due to the suppression of the deep equatorial jet. There is a strong equatorial jet within the deep atmosphere, and the T-P profile implies that cloud species Al2O4 and Mg2SiO4 can form on the night-side and terminators of WASP-76b, and within its deep atmosphere.Conclusions: Spitzer data is best matched by a strong () drag case. There is no potentially observable difference between the hot interior flux and cold interior flux. The comparisons of these simulated phase curve to JWST NIRSpec white-light phase curves will help further constrain drag in the ultra-hot regime, which will be a useful point of comparison to other ultra-hot Jupiters. Other ultra-hot Jupiters with Spitzer phase-curves (WASP-18b [6], WASP-103b [7], WASP-121b [8]) also show high dayside-nightside temperature differences. This may imply that the drag mechanisms are similar in each planet in the ultra-hot regime (~2000-2500 K). New JWST NIRSpec/G395H phase-curve data (JWST GO proposal 5268) will also constrain metallicity, breaking the drag/metallicity degeneracy. The similarity in deep-atmosphere temperature shown by Figure 3 motivates the need for a parameter sweep where the temperature at the bottom boundary is varied, as opposed to an interior heat flux, in order to speed up convergence. Likewise, the T-P profile in Figure 4 motivates the need for longer simulation runs, as the model has not reached equilibrium within the deep atmosphere.References:[1] Showman, A.P. et al. (2009), The Astrophysical Journal, 699(1), pp. 564–584.[2] Thorngren, D. et al. (2019), ApJL (Vol. 884, Issue 1)[3] Jermyn, A.S. et al. (2023), The Astrophysical Journal Supplement Series, 265, p. 15.[4] Lee, E.K. et al. (2022), The Astrophysical Journal, 929(2), p. 180[5] May, E.M. et al. (2021), The Astronomical Journal, 162(4), p. 158.[6] Maxted, P.F. et al. (2012), Monthly Notices of the Royal Astronomical Society, 428(3), pp. 2645–2660[7] Kreidberg, L. et al. (2018), The Astronomical Journal, 156(1), p. 17[8] Davenport, B. et al. (2025),  Available at: https://arxiv.org/abs/2503.12521 (Accessed: 20 March 2025).
More details from the publisher

Improving cloud microphysical parametrizations for ultra-hot Jupiter TOI-1431b

Copernicus Publications (2025)

Authors:

Julia Cottingham, Emeline Fromont, Thaddeus Komacek, Peter Gao, Diana Powell

Abstract:

Clouds have broad significance in understanding the evolution and climate of planetary atmospheres. Moreover, the presence of clouds in the atmospheres of hot Jupiter exoplanets is supported both by direct spectral detections (Grant et al. 2023, Inglis et al. 2024), and observational trends, such as nightside brightness temperature (Beatty et al. 2019) and phase curve hot spot offsets (Bell et al. 2024), suggesting that an accurate understanding of clouds is needed, not only to understand the atmospheres of these planets, but to properly interpret observations. However, the properties of clouds are impacted by inherently coupled effects of circulation, radiation, and cloud microphysics. Full coupling of these processes remains computationally expensive, and as a result, current modeling schemes implement simplified cloud parametrizations that neglect one or more of these effects. Within this work, we implement a one-way indirect coupling of the cloud microphysical model 1D CARMA and MITgcm/DISORT, a general circulation model including double-grey radiative transfer, through including a novel particle size distribution that better represents the output of CARMA. We use pre-existing CARMA data for ultra-hot Jupiter TOI-1431b from Gao & Powell (2021), which has particle size distributions that are not well described by a log-normal distribution, with corundum in particular displaying distinctly bimodal behavior. We hypothesize the smaller particle size mode corresponds to nucleation, whereas the larger particle size has formed through condensational growth and coagulation. We present a particle size distribution function that can account for this wide range of distribution variability using two log-normals and two log-exponentials. We implement this particle size distribution for corundum within MITgcm/DISORT for ultra-hot Jupiter TOI-1431b, and compare this work to that of Komacek et al. (2022a), which includes a log-normal roughly corresponding with the larger particle size mode in our distribution. We present the results of this comparison, and discuss the impact of particle size distribution on properties of ultra-hot Jupiters.
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet