Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Leek

Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Superconducting quantum devices
peter.leek@physics.ox.ac.uk
Telephone: 01865 (2)72364,01865 (2)82066
Clarendon Laboratory, room 018,104
  • About
  • Publications

Two-Qubit State Tomography using a Joint Dispersive Read-Out

(2008)

Authors:

S Filipp, P Maurer, PJ Leek, M Baur, R Bianchetti, JM Fink, M Göppl, L Steffen, JM Gambetta, A Blais, A Wallraff
More details from the publisher

Two-Qubit State Tomography using a Joint Dispersive Read-Out

ArXiv 0812.2485 (2008)

Authors:

S Filipp, P Maurer, PJ Leek, M Baur, R Bianchetti, JM Fink, M Göppl, L Steffen, JM Gambetta, A Blais, A Wallraff

Abstract:

Quantum state tomography is an important tool in quantum information science for complete characterization of multi-qubit states and their correlations. Here we report a method to perform a joint simultaneous read-out of two superconducting qubits dispersively coupled to the same mode of a microwave transmission line resonator. The non-linear dependence of the resonator transmission on the qubit state dependent cavity frequency allows us to extract the full two-qubit correlations without the need for single shot read-out of individual qubits. We employ standard tomographic techniques to reconstruct the density matrix of two-qubit quantum states.
Details from ArXiV
More details from the publisher
More details
More details

Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

(2008)

Authors:

PJ Leek, S Filipp, P Maurer, M Baur, R Bianchetti, JM Fink, M Göppl, L Steffen, A Wallraff
More details from the publisher

Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits

ArXiv 0812.2678 (2008)

Authors:

PJ Leek, S Filipp, P Maurer, M Baur, R Bianchetti, JM Fink, M Göppl, L Steffen, A Wallraff

Abstract:

We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and subsequently distributes the entanglement between two qubits. We show generation of 75% fidelity Bell states by this method. The full density matrix of the two qubit system is extracted using joint measurement and quantum state tomography, and shows close agreement with numerical simulation. The scheme is potentially extendable to a scalable universal gate for quantum computation.
Details from ArXiV
More details from the publisher

Coplanar Waveguide Resonators for Circuit Quantum Electrodynamics

(2008)

Authors:

M Göppl, A Fragner, M Baur, R Bianchetti, S Filipp, JM Fink, PJ Leek, G Puebla, L Steffen, A Wallraff
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet