Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Leek

Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Superconducting quantum devices
peter.leek@physics.ox.ac.uk
Telephone: 01865 (2)72364,01865 (2)82066
Clarendon Laboratory, room 018,104
  • About
  • Publications

Charge pumping in carbon nanotubes

PHYSICAL REVIEW LETTERS 95:25 (2005) ARTN 256802

Authors:

PJ Leek, MR Buitelaar, VI Talyanskii, CG Smith, D Anderson, GAC Jones, J Wei, DH Cobden
More details from the publisher
More details
Details from ArXiV

Calibration of the cross-resonance two-qubit gate between directly-coupled transmons

Phys. Rev. Applied 12 064013-064013

Authors:

AD Patterson, J Rahamim, T Tsunoda, P Spring, S Jebari, K Ratter, M Mergenthaler, G Tancredi, B Vlastakis, M Esposito, PJ Leek

Abstract:

Quantum computation requires the precise control of the evolution of a quantum system, typically through application of discrete quantum logic gates on a set of qubits. Here, we use the cross-resonance interaction to implement a gate between two superconducting transmon qubits with a direct static dispersive coupling. We demonstrate a practical calibration procedure for the optimization of the gate, combining continuous and repeated-gate Hamiltonian tomography with step-wise reduction of dominant two-qubit coherent errors through mapping to microwave control parameters. We show experimentally that this procedure can enable a $\hat{ZX}_{-\pi/2}$ gate with a fidelity $F=97.0(7)\%$, measured with interleaved randomized benchmarking. We show this in a architecture with out-of-plane control and readout that is readily extensible to larger scale quantum circuits.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Improving dispersive readout of a superconducting qubit by machine learning on path signature

Authors:

Shuxiang Cao, Zhen Shao, Jian-Qing Zheng, Mustafa Bakr, Peter Leek, Terry Lyons

Abstract:

One major challenge that arises from quantum computing is to implement fast, high-accuracy quantum state readout. For superconducting circuits, this problem reduces to a time series classification problem on readout signals. We propose that using path signature methods to extract features can enhance existing techniques for quantum state discrimination. We demonstrate the superior performance of our proposed approach over conventional methods in distinguishing three different quantum states on real experimental data from a superconducting transmon qubit.
Details from ORA

Quantum Sensors for the Hidden Sector (QSHS) - A Summary of Our First Year!

Authors:

Ian Bailey, Bhaswati Chakraborty, Gemma Chapman, Ed Daw, Ling Hao, Edward Hardy, Edward Laird, Peter Leek, John Gallop, Gianluca Gregori, John March-Russell, Phil Meeson, Clem Mostyn, Yuri Pashkin, Searbhan O Peatain, Mitch Perry, Michele Piscitelli, Edward Romans, Subir Sarkar, Ningqiang Song, Mahesh Soni, Paul Smith, Boon-Kok Tan, Stephen West, Stafford Withington
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet