The Milky Way Project First Data Release: A bubblier Galactic disc
Monthly Notices of the Royal Astronomical Society 424:4 (2012) 2442-2460
Abstract:
We present a new catalogue of 5106 infrared bubbles created through visual classification via the online citizen science website 'The Milky Way Project'. Bubbles in the new catalogue have been independently measured by at least five individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists - volunteers recruited online and taking part in this research - have independently rediscovered the locations of at least 86 percent of three widely used catalogues of bubbles and Hii regions whilst finding an order of magnitude more objects. 29 percent of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a 'heat map' of star formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Galaxy Zoo: Quantifying Morphological Indicators of Galaxy Interaction
ArXiv 1206.502 (2012)
Abstract:
We use Galaxy Zoo 2 visual classifications to study the morphological signatures of interaction between similar-mass galaxy pairs in the Sloan Digital Sky Survey. We find that many observable features correlate with projected pair separation; not only obvious indicators of merging, disturbance and tidal tails, but also more regular features, such as spiral arms and bars. These trends are robustly quantified, using a control sample to account for observational biases, producing measurements of the strength and separation scale of various morphological responses to pair interaction. For example, we find that the presence of spiral features is enhanced at scales < 70 h^-1 kpc, probably due to both increased star formation and the formation of tidal tails. On the other hand, the likelihood of identifying a bar decreases significantly in pairs with separations < 30 h^-1 kpc, suggesting that bars are suppressed by close interactions between galaxies of similar mass. We go on to show how morphological indicators of physical interactions provide a way of significantly refining standard estimates for the frequency of close pair interactions, based on velocity offset and projected separation. The presence of loosely wound spiral arms is found to be a particularly reliable signal of an interaction, for projected pair separations up to ~100 h^-1 kpc. We use this indicator to demonstrate our method, constraining the fraction of low-redshift galaxies in truly interacting pairs, with M_* > 10^9.5 M_Sun and mass ratio < 4, to be between 0.4 - 2.7 per cent.The History and Environment of a Faded Quasar: Hubble Space Telescope observations of Hanny's Voorwerp and IC 2497
ArXiv 1206.3797 (2012)
Abstract:
We present Hubble Space Telescope imaging and spectroscopy for the extended high-ionization cloud known as Hanny's Voorwerp, near the spiral galaxy IC 2497. WFC3 images show complex dust absorption near the nucleus of IC 2497. STIS spectra show a type 2 Seyfert AGN of rather low luminosity. The ionization parameter log U = -3.5 is in accord with its weak X-ray emission. We find no high-ionization gas near the nucleus, adding to evidence that the AGN is currently at low radiative output (perhaps now dominated by kinetic energy). The nucleus is accompanied by an expanding ring of ionized gas 500 pc in projected diameter on the side opposite Hanny's Voorwerp, with Doppler offset 300 km/s from the nucleus (kinematic age < 7 x10^5 years). [O III] and H-alpha + [N II] images show fine structure in Hanny's Voorwerp, with limb-brightened sections and small areas where H-alpha is strong. We identify these as regions ionized by recent star formation, in contrast to the AGN ionization of the entire cloud. These candidate "normal" H II regions contain blue continuum objects, whose colors are consistent with young stellar populations; they appear only in a 2-kpc region toward IC 2497 in projection. The ionization-sensitive ratio [O III]/H-alpha shows no discernible pattern near the prominent "hole" in the ionized gas. The independence of ionization and surface brightness suggests that substantial spatial structure remains unresolved, to such an extent that the surface brightness sample the number of denser filaments rather than the characteristic density in emission regions. These results fit with our picture of an ionization echo from an AGN whose ionizing luminosity has dropped by a factor > 100 (and possibly much more) within the last 1-2 x 10^5 years; we suggest a sequence of events and discuss implications of such rapid fluctuations for AGN demographics. (Abridged)Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers
ArXiv 1206.1266 (2012)
Abstract:
We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10$^{11}$ $M_\odot$ that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured ($N_H \lesssim 1.1 \times 10^{22}$ cm$^{-2}$) X-ray nuclei are relatively common (8/12), but the detections are too faint ($< 40$ counts per nucleus; $f_{2-10 keV} \lesssim 1.2 \times 10^{-13}$ erg s$^{-1}$ cm$^{-2}$) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.Planet Hunters: Assessing the Kepler Inventory of Short Period Planets
ArXiv 1205.6769 (2012)