Two-channel Kondo physics in tunnel-coupled double quantum dots
ArXiv 1106.545 (2011)
Abstract:
We investigate theoretically the possibility of observing two-channel Kondo (2CK) physics in tunnel-coupled double quantum dots (TCDQDs), at both zero and finite magnetic fields; taking the two-impurity Anderson model (2AIM) as the basic TCDQD model, together with effective low-energy models arising from it by Schrieffer-Wolff transformations to second and third order in the tunnel couplings. The models are studied primarily using Wilson's numerical renormalization group. At zero-field our basic conclusion is that while 2CK physics arises in principle provided the system is sufficiently strongly-correlated, the temperature window over which it could be observed is much lower than is experimentally feasible. This finding disagrees with recent work on the problem, and we explain why. At finite field, we show that the quantum phase transition known to arise at zero-field in the two-impurity Kondo model (2IKM), with an essentially 2CK quantum critical point, persists at finite fields. This raises the prospect of access to 2CK physics by tuning a magnetic field, although preliminary investigation suggests this to be even less feasible than at zero field.Two-channel Kondo phases and frustration-induced transitions in triple quantum dots
Physical Review B - Condensed Matter and Materials Physics 81:7 (2010)
Abstract:
We study theoretically a ring of three quantum dots mutually coupled by antiferromagnetic exchange interactions and tunnel-coupled to two metallic leads: the simplest model in which the consequences of local frustration arising from internal degrees of freedom may be studied within a two-channel environment. Two-channel Kondo (2CK) physics is found to predominate at low energies in the mirror-symmetric models considered, with a residual spin- 1 2 overscreened by coupling to both leads. It is however shown that two distinct 2CK phases, with different ground-state parities, arise on tuning the interdot exchange couplings. In consequence a frustration-induced quantum phase transition occurs, the 2CK phases being separated by a quantum critical point for which an effective low-energy model is derived. Precisely at the transition, parity mixing of the quasidegenerate local trimer states acts to destabilize the 2CK fixed points; and the critical fixed point is shown to consist of a free pseudospin together with effective one-channel spin quenching, itself reflecting underlying channel anisotropy in the inherently two-channel system. Numerical renormalization group techniques and physical arguments are used to obtain a detailed understanding of the problem, including study of both thermodynamic and dynamical properties of the system. © 2010 The American Physical Society.Interplay between Kondo physics and spin-orbit coupling in carbon nanotube quantum dots
ArXiv 0911.2886 (2009)
Abstract:
We investigate the influence of spin-orbit coupling on the Kondo effects in carbon nanotube quantum dots, using the numerical renormalization group technique. A sufficiently large spin-orbit coupling is shown to destroy the SU(4) Kondo effects at zero magnetic field, leaving only two SU(2) Kondo effects in the one- and three-electron Coulomb blockade valleys. On applying a finite magnetic field, two additional, spin-orbit induced SU(2) Kondo effects arise in the three- and two-electron valleys. Using physically realistic model parameters, we calculate the differential conductance over a range of gate voltages, temperatures and fields. The results agree well with measurements from two different experimental devices in the literature, and explain a number of observations that are not described within the standard framework of the SU(4) Anderson impurity model.A local moment approach to the degenerate Anderson impurity model.
J Phys Condens Matter 21:37 (2009) 375602
Abstract:
The local moment approach is extended to the orbitally degenerate (SU(2N)) Anderson impurity model (AIM). Single-particle dynamics are obtained over the full range of energy scales, focusing on particle-hole symmetry in the strongly-correlated regime where the onsite Coulomb interaction leads to many-body Kondo physics with entangled spin and orbital degrees of freedom. The approach captures many-body broadening of the Hubbard satellites and recovers the correct exponential vanishing of the Kondo scale for all N, and its universal scaling spectra are found to be in very good agreement with numerical renormalization group (NRG) results. In particular the high-frequency logarithmic decays of the scaling spectra, obtained here in closed form for arbitrary N, coincide essentially perfectly with available numerics from the NRG. A particular case of an anisotropic Coulomb interaction, in which the model represents a system of N 'capacitively coupled' SU(2) AIMs, is also discussed. Here the model is generally characterized by two low-energy scales, the crossover between which is seen directly in its dynamics.Correlated electron physics in multilevel quantum dots: phase transitions, transport, and experiment
ArXiv 0906.3169 (2009)