Zero-bias conductance in carbon nanotube quantum dots
ArXiv 0711.2168 (2007)
Abstract:
We present numerical renormalization group calculations for the zero-bias conductance of quantum dots made from semiconducting carbon nanotubes. These explain and reproduce the thermal evolution of the conductance for different groups of orbitals, as the dot-lead tunnel coupling is varied and the system evolves from correlated Kondo behavior to more weakly correlated regimes. For integer fillings $N=1,2,3$ of an SU(4) model, we find universal scaling behavior of the conductance that is distinct from the standard SU(2) universal conductance, and concurs quantitatively with experiment. Our results also agree qualitatively with experimental differential conductance maps.Evolution and destruction of the Kondo effect in a capacitively coupled double dot system
International Journal of Modern Physics B 21:13-14 (2007) 2191-2203
Abstract:
We consider the simplest example of a double quantum dot system: two equivalent, capacitively coupled single-level dots, each coupled to its own lead. Focussing on a regime of two electrons on the double dot, a rich range of behaviour is found on increasing the interdot coupling: first a crossover from spin- to charge-Kondo physics, via an intermediate SU(4) state with entangled spin and charge degrees of freedom; followed by a quantum phase transition of Kosterlitz-Thouless type to a non-Fermi liquid 'charge-ordered' phase with finite residual entropy and anomalous transport properties. The numerical renormalization group method, coupled with simple physical arguments, is employed to obtain a detailed understanding of the problem. © World Scientific Publishing Company.Interaction effects in mixed-valent Kondo insulators
Journal of Physics Condensed Matter 19:10 (2007)
Abstract:
We study theoretically the class of mixed-valent Kondo insulators, employing a recently developed local moment approach to heavy Fermion systems using the asymmetric periodic Anderson model (PAM). Novel features in spectra and transport, observable experimentally but lying outside the scope of the symmetric PAM or the Kondo lattice model, emerge naturally within the present theory. We argue in particular that a shoulder-like feature in the optical conductivity, that is distinct from the usual mid-infrared or direct gap peak and has been observed experimentally in mixed-valent compounds such as CeOs 4Sb12 and YbAl3, is of intrinsic origin. Detailed comparison is made between the resultant theory and transport/optical experiments on the filled-skutterudite compound CeOs4Sb12, and good agreement is obtained. © 2007 IOP Publishing Ltd.Gate voltage effects in capacitively coupled quantum dots
ArXiv cond-mat/0611219 (2006)
Abstract:
We study a system of two symmetrical capacitively coupled quantum dots, each coupled to its own metallic lead, focusing on its evolution as a function of the gate voltage applied to each dot. Using the numerical renormalization group and poor man's scaling techniques, the low-energy Kondo scale of the model is shown to vary significantly with the gate voltage, being exponentially small when spin and pseudospin degrees of freedom dominate; but increasing to much larger values when the gate voltage is tuned close to the edges of the Coulomb blockade staircase where low-energy charge-fluctuations also enter, leading thereby to correlated electron physics on energy/temperature scales more accessible to experiment. This range of behaviour is also shown to be manifest strongly in single-particle dynamics and electron transport through each dot.Dynamics of capacitively coupled double quantum dots
ArXiv cond-mat/0608186 (2006)