Individually Addressed Quantum Gate Interactions Using Dynamical Decoupling
PRX Quantum American Physical Society (APS) 5:3 (2024) 030321
Robust and fast microwave-driven quantum logic for trapped-ion qubits
Physical Review A American Physical Society (APS) 110:1 (2024) l010601
Verifiable blind quantum computing with trapped ions and single photons
Physical Review Letters American Physical Society 132:15 (2024) 150604
Abstract:
We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection—key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud.
Breaking the entangling gate speed limit for trapped-ion qubits using a phase-stable standing wave
Physical Review Letters American Physical Society 131:22 (2023) 220601
Abstract:
All laser-driven entangling operations for trapped-ion qubits have hitherto been performed without control of the optical phase of the light field, which precludes independent tuning of the carrier and motional coupling. By placing 88Sr+ ions in a λ=674 nm standing wave, whose relative position is controlled to ≈λ/100, we suppress the carrier coupling by a factor of 18, while coherently enhancing the spin-motion coupling. We experimentally demonstrate that the off-resonant carrier coupling imposes a speed limit for conventional traveling-wave Mølmer-Sørensen gates; we use the standing wave to surpass this limit and achieve a gate duration of 15 μs, restricted by the available laser power.Cryogenic ion trap system for high-fidelity near-field microwave-driven quantum logic
Quantum Science and Technology IOP Publishing 9:1 (2023) 015007