Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dougal Main

Visitor

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
dougal.main@physics.ox.ac.uk
Clarendon Laboratory, room 145.00.21 (Ion Trap Laboratory
  • About
  • Publications

Room temperature atomic frequency comb storage for light

Optics Letters Optical Society of America 46:12 (2021) 2960-2960

Authors:

Dougal Main, Thomas Hird, Shaobo Gao, Ian Walmsley, Patrick Ledingham

Abstract:

We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb protocol in a room temperature alkali vapor. We utilize velocity-selective optical pumping to prepare multiple velocity classes in the 𝐹=4 hyperfine ground state of cesium. The frequency spacing of the classes is chosen to coincide with the 𝐹′=4−𝐹′=5 hyperfine splitting of the 62P3/2 excited state, resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration 2ns are mapped into this atomic frequency comb with pre-programmed recall times of 8ns and 12ns, with multi-temporal mode storage and recall demonstrated. Utilizing two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.
More details from the publisher
Details from ORA
More details
More details

Preparing narrow velocity distributions for quantum memories in room-temperature alkali-metal vapors

Physical Review A: American Physical Society 103 (2021) 043105

Authors:

Dougal Main, Thomas Hird, Patrick Ledingham, Dylan Saunders, Ian Walmsley, Shaobo Gao

Abstract:

Quantum memories are a crucial technology for enabling large-scale quantum networks through synchronization of probabilistic operations. Such networks impose strict requirements on quantum memory, such as storage time, retrieval efficiency, bandwidth, and scalability. On- and off-resonant ladder protocols on warm atomic vapor platforms are promising candidates, combining efficient high-bandwidth operation with low-noise on-demand retrieval. However, their storage time is severely limited by motion-induced dephasing caused by the broad velocity distribution of atoms composing the vapor. In this paper, we demonstrate velocity selective optical pumping to overcome this decoherence mechanism. This will increase the achievable memory storage time of vapor memories. This technique can also be used for preparing arbitrarily shaped absorption profiles, for instance, preparing an atomic frequency comb absorption feature.
More details from the publisher
Details from ORA
More details

Preparing Narrow Velocity Distributions for Quantum Memories in Room-Temperature Alkali Vapours

(2020)

Authors:

D Main, TM Hird, S Gao, E Oguz, DJ Saunders, IA Walmsley, PM Ledingham
More details from the publisher
Details from ArXiV

Room Temperature Atomic Frequency Comb Memory for Light

(2020)

Authors:

D Main, TM Hird, S Gao, IA Walmsley, PM Ledingham
More details from the publisher
Details from ArXiV

Demonstration of an Atomic Frequency Comb Quantum Memory using Velocity-Selective Pumping in Warm Alkali Vapour

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS 2020-May (2020)

Authors:

TM Hird, DJ Main, S Gao, E Oguz, DJ Saunders, IA Walmsley, PM Ledingham

Abstract:

We present the first demonstration of velocity-selective pumping in an atomic vapour to preserve light-matter coherence. Control is illustrated by a subsequent demonstration of an atomic frequency comb quantum memory realised in the vapour.

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet