Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Matthews

Royal Society University Research Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Gamma-ray astronomy
james.matthews@physics.ox.ac.uk
Telephone: 01865(2)73299
Denys Wilkinson Building, room Undercroft
Website
  • About
  • Into the Cosmos
  • Publications

Stratified disc wind models for the AGN broad-line region: ultraviolet, optical and X-ray properties

ArXiv 2001.03625 (2020)

Authors:

James H Matthews, Christian Knigge, Nick Higginbottom, Knox S Long, Stuart A Sim, Samuel W Mangham, Edward J Parkinson, Henrietta A Hewitt
Details from ArXiV

Ultra-high energy cosmic rays from shocks in the lobes of powerful radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 4303-4321

Authors:

James Matthews, Bryn Bell, Katherine Blundell, AT Araudo

Abstract:

The origin of ultra-high energy cosmic rays (UHECRs) has been an open question for decades. Here, we use a combination of hydrodynamic simulations and general physical arguments to demonstrate that UHECRs can in principle be produced by diffusive shock acceleration (DSA) in shocks in the backflowing material of radio galaxy lobes. These shocks occur after the jet material has passed through the relativistic termination shock. Recently, several authors have demonstrated that highly relativistic shocks are not effective in accelerating UHECRs. The shocks in our proposed model have a range of non-relativistic or mildly relativistic shock velocities more conducive to UHECR acceleration, with shock sizes in the range 1 − 10 kpc. Approximately 10% of the jet’s energy flux is focused through a shock in the backflow of M > 3. Although the shock velocities can be low enough that acceleration to high energy via DSA is still efficient, they are also high enough for the Hillas energy to approach 1019−20 eV, particularly for heavier CR composition and in cases where fluid elements pass through multiple shocks. We discuss some of the more general considerations for acceleration of particles to ultra-high energy with reference to giant-lobed radio galaxies such as Centaurus A and Fornax A, a class of sources which may be responsible for the observed anisotropies from UHECR observatories.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Testing AGN outflow and accretion models with C iv and He ii emission line demographics in z ≈ 2 quasars

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 523:1 (2023) 646-666

Authors:

Matthew J Temple, James H Matthews, Paul C Hewett, Amy L Rankine, Gordon T Richards, Manda Banerji, Gary J Ferland, Christian Knigge, Matthew Stepney
More details from the publisher

Studying the link between radio galaxies and AGN fuelling with relativistic hydrodynamic simulations of flickering jets

ArXiv 2305.19328 (2023)

Authors:

Henry W Whitehead, James H Matthews
Details from ArXiV

Dynamic shocks powered by a wide, relativistic, super-Eddington outflow launched by an accreting neutron star in the mid-20th century

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag163

Authors:

FJ Cowie, RP Fender, I Heywood, F Carotenuto, JH Matthews, B Reville, L Olivera-Nieto, AJ Cooper, AK Hughes, K Savard, PA Woudt, J van den Eijnden, N Grollimund, P Saikia

Abstract:

Abstract Accreting systems can launch powerful outflows which interact with the surrounding medium. We combine new radio observations of the accreting neutron star X-ray binary (XRB) Circinus X-1 (Cir X-1) with archival radio observations going back 24 years. The ∼3 pc scale wide-angle radio and X-ray emitting caps found around Cir X-1 are identified as synchrotron emitting shocks with significant proper motion and morphological evolution on decade timescales. Proper motion measurements of the shocks reveal they are mildly relativistic and decelerating, with apparent velocity of 0.14c ± 0.03c at a propagation distance of 2 pc. We demonstrate that these shocks are likely powered by a hidden relativistic (≳ 0.3c) wide-angle conical outflow launched in 1972 ± 3, in stark contrast to known structures around other XRBs formed by collimated jets over 1000s of years. The minimum time-averaged power of the outflow required to produce the observed synchrotron emission is ∼0.1LEdd, while the time-averaged power required for the kinetic energy of the shocks is $\sim 40 \left(\frac{n}{10^{-2} \textrm{cm}^{-3}}\right)L_\textrm{Edd}$, where n is the average ambient medium number density. This reveals the outflow powering the shocks is likely significantly super-Eddington. We measure significant linear polarisation up to 52 ± 6% in the shocks demonstrating the presence of an ordered magnetic field of strength ∼200 μG. We show that the shocks are potential PeVatrons, capable of accelerating electrons to ∼0.7 PeV and protons to ∼20 PeV, and we estimate the injection and energetic efficiencies of electron acceleration in the shocks. Finally, we predict that next generation gamma-ray facilities may be able to detect hadronic signatures from the shocks.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet