Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Matthews

Royal Society University Research Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Gamma-ray astronomy
james.matthews@physics.ox.ac.uk
Telephone: 01865(2)73299
Denys Wilkinson Building, room Undercroft
Website
  • About
  • Into the Cosmos
  • Publications

Accretion disc winds in tidal disruption events: ultraviolet spectral lines as orientation indicators

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 494:4 (2020) 4914-4929

Authors:

Edward J Parkinson, Christian Knigge, Knox S Long, James H Matthews, Nick Higginbottom, Stuart A Sim, Henrietta A Hewitt
More details from the publisher

Uncovering the orbital dynamics of stars hidden inside their powerful winds: application to $η$ Carinae and RMC 140

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:1 (2020) 17-35

Authors:

David Grant, Katherine Blundell, James Matthews

Abstract:

Determining accurate orbits of binary stars with powerful winds is challenging. The dense outflows increase the effective photospheric radius, precluding direct observation of the Keplerian motion; instead the observables are broad lines emitted over large radii in the stellar wind. Our analysis reveals strong, systematic discrepancies between the radial velocities extracted from different spectral lines: the more extended a line's emission region, the greater the departure from the true orbital motion. To overcome these challenges, we formulate a novel semi-analytical model which encapsulates both the star's orbital motion and the propagation of the wind. The model encodes the integrated velocity field of the out-flowing gas in terms of a convolution of past motion due to the finite flow speed of the wind. We test this model on two binary systems. (1), for the extreme case $\eta$ Carinae, in which the effects are most prominent, we are able to fit the model to 10 Balmer lines from H-alpha to H-kappa concurrently with a single set of orbital parameters: time of periastron $T_{0}=2454848$ (JD), eccentricity $e=0.91$, semi-amplitude $k=69$ km/s and longitude of periastron $\omega=241^\circ$. (2) for a more typical case, the Wolf-Rayet star in RMC 140, we demonstrate that for commonly used lines, such as He II and N III/IV/V, we expect deviations between the Keplerian orbit and the predicted radial velocities. Our study indicates that corrective modelling, such as presented here, is necessary in order to identify a consistent set of orbital parameters, independent of the emission line used, especially for future high accuracy work.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Stratified disc wind models for the AGN broad-line region: ultraviolet, optical, and X-ray properties

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 492:4 (2020) 5540-5560

Authors:

James H Matthews, Christian Knigge, Nick Higginbottom, Knox S Long, Stuart A Sim, Samuel W Mangham, Edward J Parkinson, Henrietta A Hewitt
More details from the publisher

Thermal and radiation driving can produce observable disc winds in hard-state X-ray binaries

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 492:4 (2020) 5271-5279

Authors:

Nick Higginbottom, Christian Knigge, Stuart A Sim, Knox S Long, James H Matthews, Henrietta A Hewitt, Edward J Parkinson, Sam W Mangham
More details from the publisher

Stratified disc wind models for the AGN broad-line region: ultraviolet, optical and X-ray properties

ArXiv 2001.03625 (2020)

Authors:

James H Matthews, Christian Knigge, Nick Higginbottom, Knox S Long, Stuart A Sim, Samuel W Mangham, Edward J Parkinson, Henrietta A Hewitt
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet