Cosmic ray acceleration to ultrahigh energy in radio galaxies
EPJ Web of Conferences EDP Sciences (2019)
Abstract:
The origin of ultrahigh energy cosmic rays (UHECRs) is an open question. In this proceeding, we first review the general physical requirements that a source must meet for acceleration to 10-100 EeV, including the consideration that the shock is not highly relativistic. We show that shocks in the backflows of radio galaxies can meet these requirements. We discuss a model in which giant-lobed radio galaxies such as Centaurus A and Fornax A act as slowly-leaking UHECR reservoirs, with the UHECRs being accelerated during a more powerful past episode. We also show that Centaurus A, Fornax A and other radio galaxies may explain the observed anisotropies in data from the Pierre Auger Observatory, before examining some of the difficulties in associating UHECR anisotropies with astrophysical sources.The luminosity dependence of thermally driven disc winds in low-mass X-ray binaries
Monthly Notices of the Royal Astronomical Society 484:4 (2019) 4635-4644
Abstract:
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We have carried out radiation-hydrodynamic simulations of thermally driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range 0.04 ≤ L acc /L Edd ≤ 1.0 and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity - and hence the maximum blueshift seen in wind-formed absorption lines - increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at skew4dotM-rm wind/skew4dotM-rm acc simeq 2, a behaviour that is consistent with observations. We also present synthetic Fe xxv and Fe xxvi absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.On the maximum energy of protons in the hotspots of AGN jets
EPJ Web of Conferences EDP Sciences 210 (2019) 04006
Disc wind models for FU Ori objects
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2018)
Ultra-high energy cosmic rays from shocks in the lobes of powerful radio galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 4303-4321