The luminosity dependence of thermally driven disc winds in low-mass X-ray binaries
Monthly Notices of the Royal Astronomical Society 484:4 (2019) 4635-4644
Abstract:
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We have carried out radiation-hydrodynamic simulations of thermally driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range 0.04 ≤ L acc /L Edd ≤ 1.0 and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity - and hence the maximum blueshift seen in wind-formed absorption lines - increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at skew4dotM-rm wind/skew4dotM-rm acc simeq 2, a behaviour that is consistent with observations. We also present synthetic Fe xxv and Fe xxvi absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.On the maximum energy of protons in the hotspots of AGN jets
EPJ Web of Conferences EDP Sciences 210 (2019) 04006
Disc wind models for FU Ori objects
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2018)
Ultra-high energy cosmic rays from shocks in the lobes of powerful radio galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 4303-4321
Abstract:
The origin of ultra-high energy cosmic rays (UHECRs) has been an open question for decades. Here, we use a combination of hydrodynamic simulations and general physical arguments to demonstrate that UHECRs can in principle be produced by diffusive shock acceleration (DSA) in shocks in the backflowing material of radio galaxy lobes. These shocks occur after the jet material has passed through the relativistic termination shock. Recently, several authors have demonstrated that highly relativistic shocks are not effective in accelerating UHECRs. The shocks in our proposed model have a range of non-relativistic or mildly relativistic shock velocities more conducive to UHECR acceleration, with shock sizes in the range 1 − 10 kpc. Approximately 10% of the jet’s energy flux is focused through a shock in the backflow of M > 3. Although the shock velocities can be low enough that acceleration to high energy via DSA is still efficient, they are also high enough for the Hillas energy to approach 1019−20 eV, particularly for heavier CR composition and in cases where fluid elements pass through multiple shocks. We discuss some of the more general considerations for acceleration of particles to ultra-high energy with reference to giant-lobed radio galaxies such as Centaurus A and Fornax A, a class of sources which may be responsible for the observed anisotropies from UHECR observatories.The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey
Astronomy and Astrophysics EDP Sciences 622 (2018) A15