A Challenge to the Standard Cosmological Model
To appear in APJ Letters, 2022
Abstract:
We present the first joint analysis of catalogs of radio galaxies and quasars to determine if their sky distribution is consistent with the standard $\Lambda$CDM model of cosmology. This model is based on the cosmological principle, which asserts that the universe is statistically isotropic and homogeneous on large scales, so the observed dipole anisotropy in the cosmic microwave background (CMB) must be attributed to our local peculiar motion. We test the null hypothesis that there is a dipole anisotropy in the sky distribution of radio galaxies and quasars consistent with the motion inferred from the CMB, as is expected for cosmologically distant sources. Our two samples, constructed respectively from the NRAO VLA Sky Survey and the Wide-field Infrared Survey Explorer, are systematically independent and have no shared objects. Using a completely general statistic that accounts for correlation between the found dipole amplitude and its directional offset from the CMB dipole, the null hypothesis is independently rejected by the radio galaxy and quasar samples with $p$-value of $8.9\times10^{-3}$ and $1.2\times10^{-5}$, respectively, corresponding to $2.6\sigma$ and $4.4\sigma$ significance. The joint significance, using sample size-weighted $Z$-scores, is $5.1\sigma$. We show that the radio galaxy and quasar dipoles are consistent with each other and find no evidence for any frequency dependence of the amplitude. The consistency of the two dipoles improves if we boost to the CMB frame assuming its dipole to be fully kinematic, suggesting that cosmologically distant radio galaxies and quasars may have an intrinsic anisotropy in this frame.
A Test of the Cosmological Principle with Quasars
The Astrophysical Journal Letters, 2021, Volume 908, Issue 2, id.L51, 6 pp.
Abstract:
We study the large-scale anisotropy of the universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 μm from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of 5 × 10-7 (4.9σ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance ΛCDM model.
A fast semidiscrete optimal transport algorithm for a unique reconstruction of the early Universe
Monthly Notices of the Royal Astronomical Society, 2021, Volume 506, Issue 1, pp.1165-1185
Abstract:
We leverage powerful mathematical tools stemming from optimal transport theory and transform them into an efficient algorithm to reconstruct the fluctuations of the primordial density field, built on solving the Monge-Ampère-Kantorovich equation. Our algorithm computes the optimal transport between an initial uniform continuous density field, partitioned into Laguerre cells, and a final input set of discrete point masses, linking the early to the late Universe. While existing early universe reconstruction algorithms based on fully discrete combinatorial methods are limited to a few hundred thousand points, our algorithm scales up well beyond this limit, since it takes the form of a well-posed smooth convex optimization problem, solved using a Newton method. We run our algorithm on cosmological N-body simulations, from the AbacusCosmos suite, and reconstruct the initial positions of $\mathcal {O}(10^7)$ particles within a few hours with an off-the-shelf personal computer. We show that our method allows a unique, fast, and precise recovery of subtle features of the initial power spectrum, such as the baryonic acoustic oscillations.
Refined Second Law of Thermodynamics for Fast Random Processes
Journal of Statistical Physics, 2012, Volume 147, Issue 3, pp.487-505
Abstract:
We establish a refined version of the Second Law of Thermodynamics for Langevin stochastic processes describing mesoscopic systems driven by conservative or non-conservative forces and interacting with thermal noise. The refinement is based on the Monge-Kantorovich optimal mass transport and becomes relevant for processes far from quasi-stationary regime. General discussion is illustrated by numerical analysis of the optimal memory erasure protocol for a model for micron-size particle manipulated by optical tweezers.
A reconstruction of the initial conditions of the Universe by optimal mass transportation
Nature, 2022, Volume 417, Issue 6886, pp. 260-262
Abstract:
Reconstructing the density fluctuations in the early Universe that evolved into the distribution of galaxies we see today is a challenge to modern cosmology. An accurate reconstruction would allow us to test cosmological models by simulating the evolution starting from the reconstructed primordial state and comparing it to observations. Several reconstruction techniques have been proposed, but they all suffer from lack of uniqueness because the velocities needed to produce a unique reconstruction usually are not known. Here we show that reconstruction can be reduced to a well-determined problem of optimization, and present a specific algorithm that provides excellent agreement when tested against data from N-body simulations. By applying our algorithm to the redshift surveys now under way, we will be able to recover reliably the properties of the primeval fluctuation field of the local Universe, and to determine accurately the peculiar velocities (deviations from the Hubble expansion) and the true positions of many more galaxies than is feasible by any other method.