A self-lensing binary massive black hole interpretation of quasi-periodic eruptions
Monthly Notices of the Royal Astronomical Society Oxford University Press 503:2 (2021) 1703-1716
Abstract:
Binary supermassive black hole (SMBH) systems result from galaxy mergers, and will eventually coalesce due to gravitational wave (GW) emission if the binary separation can be reduced to . 0.1 pc by other mechanisms. Here, we explore a gravitational self-lensing binary SMBH model for the sharp (duration ⇠ 1 hr), quasi-regular X-ray flares – dubbed quasiperiodic eruptions – recently observed from two low mass active galactic nuclei: GSN 069 and RX J1301.9+2747. In our model, the binary is observed ⇠edge-on, such that each SMBH gravitationally lenses light from the accretion disc surrounding the other SMBH twice per orbital period. The model can reproduce the flare spacings if the current eccentricity of RX J1301.9+2747 is n0 & 0.16, implying a merger within ⇠ 1000 yrs. However, we cannot reproduce the observed flare profiles with our current calculations. Model flares with the correct amplitude are ⇠ 2/5 the observed duration, and model flares with the correct duration are ⇠ 2/5 the observed amplitude. Our modelling yields three distinct behaviours of self-lensing binary systems that can be searched for in current and future X-ray and optical time-domain surveys: i) periodic lensing flares, ii) partial eclipses (caused by occultation of the background mini-disc by the foreground mini-disc), and iii) partial eclipses with a very sharp in-eclipse lensing flare. Discovery of such features would constitute very strong evidence for the presence of a supermassive binary, and monitoring of the flare spacings will provide a measurement of periastron precession.Very low-frequency oscillations from the 11 Hz pulsar in Terzan 5: frame dragging back on the table.
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 502:4 (2021) 5472-5479
A self-lensing binary massive black hole interpretation of quasi-periodic eruptions
(2021)
Observations of a radio-bright, X-ray obscured GRS 1915+105
Monthly Notices of the Royal Astronomical Society Oxford University Press 503:1 (2021) 152-161
Abstract:
The Galactic black hole transient GRS 1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS 1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multiwavelength flares. Here, we report the radio and X-ray properties of GRS 1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (∼3 mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS 1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterized by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.Observations of a radio-bright, X-ray obscured GRS 1915+105
(2021)