Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Bethan Nichol

Visitor

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
bethan.nichol@physics.ox.ac.uk
Clarendon Laboratory, room Old library
  • About
  • Publications

Robust quantum memory in a trapped-ion quantum network node

Physical Review Letters American Physical Society 130 (2023) 090803

Authors:

Peter Drmota, Dougal Main, David P Nadlinger, Bethan Nichol, Marius A Weber, Ellis M Ainley, Ayush Agrawal, Raghavendra Srinivas, Gabriel Araneda, Chris J Ballance, David Lucas

Abstract:

We integrate a long-lived memory qubit into a mixed-species trapped-ion quantum network node. Ion-photon entanglement first generated with a network qubit in 88Sr+ is transferred to 43Ca+ with 0.977(7) fidelity, and mapped to a robust memory qubit. We then entangle the network qubit with another photon, which does not affect the memory qubit. We perform quantum state tomography to show that the fidelity of ion-photon entanglement decays ∼ 70 times slower on the memory qubit. Dynamical decoupling further extends the storage time; we measure an ion-photon entanglement fidelity of 0.81(4) after 10 s.
More details from the publisher
Details from ORA
More details
More details

Differential cross sections and collision-induced rotational alignment in inelastic scattering of NO(X) by Xe

Chinese Journal of Chemical Physics AIP Publishing 33:2 (2020)

Authors:

Mark Brouard, Bethan Nichol, Balazs Hornung, Cornelia Heid, Sean Goddard, Pablo G Jambrina, Javier Aoiz, Jacek Klos, Helen Chadwick

Abstract:

Fully Λ-doublet resolved differential cross sections and collision-induced rotational alignment moments have been measured for the NO(X)–Xe collision system at a collision energy of 519 cm−1 . The experiments combine initial quantum state selection, employing a hexapole inhomogeneous electric field, with quantum state resolved detection, using (1+1′ ) resonantly enhanced multiphoton ionization and velocity map ion imaging. The differential cross sections and polarization dependent differential cross sections are shown to agree well with quantum mechanical scattering calculations performed on ab initio potential energy surfaces [J. K los et al. J. Chem. Phys. 137, 014312 (2012)]. By comparison with quasi-classical trajectory calculations, quantum mechanical scattering calculations on a hard-shell potential, and kinematic apse model calculations, the effects of the attractive part of the potential on the measured differential cross sections and collision-induced rotational alignment moments are assessed.
More details from the publisher
Details from ORA
More details

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet